File size: 7,498 Bytes
7ef691e a2b48b4 7ef691e 1b80b27 92f5cdf 7ef691e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import shutil
from os import listdir
from colorama import Fore
import os
import shutil
import numpy as np
import faiss
from pathlib import Path
from sklearn.cluster import MiniBatchKMeans
import traceback
import gradio as gr
# Function to preprocess data
def preprocess_data(model_name, dataset_folder):
logs_path = f'/content/RVC/logs/{model_name}'
temp_DG_path = '/content/temp_DG'
if os.path.exists(logs_path):
print("Model already exists, This will be resume training.")
os.makedirs(temp_DG_path, exist_ok=True)
# Move files for resuming training
for item in os.listdir(logs_path):
item_path = os.path.join(logs_path, item)
if os.path.isfile(item_path) and (item.startswith('D_') or item.startswith('G_')) and item.endswith('.pth'):
shutil.copy(item_path, temp_DG_path)
for item in os.listdir(logs_path):
item_path = os.path.join(logs_path, item)
if os.path.isfile(item_path):
os.remove(item_path)
elif os.path.isdir(item_path):
shutil.rmtree(item_path)
for file_name in os.listdir(temp_DG_path):
shutil.move(os.path.join(temp_DG_path, file_name), logs_path)
shutil.rmtree(temp_DG_path)
if len(os.listdir(dataset_folder)) < 1:
return "Error: Dataset folder is empty."
os.makedirs(f'./logs/{model_name}', exist_ok=True)
!python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0
with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
log_content = f.read()
if 'end preprocess' in log_content:
return "Success: Data preprocessing complete."
else:
return "Error preprocessing data. Check your dataset folder."
# Function to extract F0 feature
def extract_f0_feature(model_name, f0method):
if f0method != "rmvpe_gpu":
!python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}
else:
!python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
log_content = f.read()
if 'all-feature-done' in log_content:
return "Success: F0 feature extraction complete."
else:
return "Error extracting F0 feature."
# Function to train index
def train_index(exp_dir1, version19):
exp_dir = f"logs/{exp_dir1}"
os.makedirs(exp_dir, exist_ok=True)
feature_dir = f"{exp_dir}/3_feature768" if version19 == "v2" else f"{exp_dir}/3_feature256"
if not os.path.exists(feature_dir) or len(os.listdir(feature_dir)) == 0:
return "Please run feature extraction first."
npys = [np.load(f"{feature_dir}/{name}") for name in sorted(os.listdir(feature_dir))]
big_npy = np.concatenate(npys, axis=0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
big_npy = MiniBatchKMeans(n_clusters=10000, batch_size=256, init="random").fit(big_npy).cluster_centers_
np.save(f"{exp_dir}/total_fea.npy", big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
index = faiss.index_factory(768 if version19 == "v2" else 256, f"IVF{n_ivf},Flat")
index.train(big_npy)
faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i:i + batch_size_add])
faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")
return f"Indexing completed. Index saved to {exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index"
def run_inference(model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection):
# Setting paths for model and index files
model_filename = model_name + '.pth'
index_temp = 'Index_Temp'
# Ensure Index_Temp exists
if not os.path.exists(index_temp):
os.mkdir(index_temp)
print("Index_Temp folder created.")
else:
print("Index_Temp folder found.")
# Copy .index file to Index_Temp
index_file_path = os.path.join('logs/', model_name, '')
for file_name in listdir(index_file_path):
if file_name.startswith('added') and file_name.endswith('.index'):
shutil.copy(index_file_path + file_name, os.path.join(index_temp, file_name))
print('Index file copied successfully.')
# Get the .index file
indexfile_directory = os.getcwd() + '/' + index_temp
files = os.listdir(indexfile_directory)
index_filename = files[0] if files else None
if index_filename is None:
raise ValueError("Index file not found.")
shutil.rmtree(index_temp)
model_path = "assets/weights/" + model_filename
index_path = os.path.join('logs', model_name, index_filename)
if not os.path.exists(input_path):
raise ValueError(f"{input_path} was not found.")
os.environ['index_root'] = os.path.dirname(index_path)
index_path = os.path.basename(index_path)
os.environ['weight_root'] = os.path.dirname(model_path)
# Run the command
cmd = f"python tools/cmd/infer_cli.py --f0up_key {pitch} --input_path {input_path} --index_path {index_path} --f0method {f0_method} --opt_path {save_as} --model_name {os.path.basename(model_path)} --index_rate {index_rate} --device 'cuda:0' --is_half True --filter_radius 3 --resample_sr 0 --rms_mix_rate {volume_normalization} --protect {consonant_protection}"
os.system(f"rm -f {save_as}")
os.system(cmd)
return f"Inference completed, output saved at {save_as}.", save_as
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# RVC V2 - EASY GUI")
with gr.Row():
with gr.Tab("Inference"):
with gr.Row():
model_name = gr.Textbox(label="Model Name For Inference")
with gr.Row():
input_path = gr.Audio(label="Input Audio Path", type="filepath")
with gr.Row():
with gr.Accordion("Inference Settings"):
pitch = gr.Slider(minimum=-12, maximum=12, step=1, label="Pitch", value=0)
f0_method = gr.Dropdown(choices=["rmvpe", "pm", "harvest"], label="f0 Method", value="rmvpe")
index_rate = gr.Slider(minimum=0, maximum=1, step=0.01, label="Index Rate", value=0.5)
volume_normalization = gr.Slider(minimum=0, maximum=1, step=0.01, label="Volume Normalization", value=0)
consonant_protection = gr.Slider(minimum=0, maximum=1, step=0.01, label="Consonant Protection", value=0.5)
with gr.Row():
save_as = gr.Textbox(value="/content/RVC/audios/output_audio.wav", label="Output Audio Path")
run_btn = gr.Button("Run Inference")
with gr.Row():
output_message = gr.Textbox(label="Output Message",interactive=False)
output_audio = gr.Audio(label="Output Audio",interactive=False)
#run_btn.click(run_inference, [model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection], output_message)
demo.launch()
|