Blane187 commited on
Commit
a2b48b4
1 Parent(s): 1b80b27

Update demo.py

Browse files
Files changed (1) hide show
  1. demo.py +99 -1
demo.py CHANGED
@@ -1,8 +1,106 @@
1
  import os
2
  import shutil
3
  from os import listdir
4
- import gradio as gr
5
  from colorama import Fore
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def run_inference(model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection):
8
  # Setting paths for model and index files
 
1
  import os
2
  import shutil
3
  from os import listdir
 
4
  from colorama import Fore
5
+ import os
6
+ import shutil
7
+ import numpy as np
8
+ import faiss
9
+ from pathlib import Path
10
+ from sklearn.cluster import MiniBatchKMeans
11
+ import traceback
12
+ import gradio as gr
13
+
14
+ # Function to preprocess data
15
+ def preprocess_data(model_name, dataset_folder):
16
+ logs_path = f'/content/RVC/logs/{model_name}'
17
+ temp_DG_path = '/content/temp_DG'
18
+
19
+ if os.path.exists(logs_path):
20
+ print("Model already exists, This will be resume training.")
21
+ os.makedirs(temp_DG_path, exist_ok=True)
22
+
23
+ # Move files for resuming training
24
+ for item in os.listdir(logs_path):
25
+ item_path = os.path.join(logs_path, item)
26
+ if os.path.isfile(item_path) and (item.startswith('D_') or item.startswith('G_')) and item.endswith('.pth'):
27
+ shutil.copy(item_path, temp_DG_path)
28
+
29
+ for item in os.listdir(logs_path):
30
+ item_path = os.path.join(logs_path, item)
31
+ if os.path.isfile(item_path):
32
+ os.remove(item_path)
33
+ elif os.path.isdir(item_path):
34
+ shutil.rmtree(item_path)
35
+
36
+ for file_name in os.listdir(temp_DG_path):
37
+ shutil.move(os.path.join(temp_DG_path, file_name), logs_path)
38
+
39
+ shutil.rmtree(temp_DG_path)
40
+
41
+ if len(os.listdir(dataset_folder)) < 1:
42
+ return "Error: Dataset folder is empty."
43
+
44
+ os.makedirs(f'./logs/{model_name}', exist_ok=True)
45
+ !python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0
46
+
47
+ with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
48
+ log_content = f.read()
49
+
50
+ if 'end preprocess' in log_content:
51
+ return "Success: Data preprocessing complete."
52
+ else:
53
+ return "Error preprocessing data. Check your dataset folder."
54
+
55
+ # Function to extract F0 feature
56
+ def extract_f0_feature(model_name, f0method):
57
+ if f0method != "rmvpe_gpu":
58
+ !python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}
59
+ else:
60
+ !python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True
61
+
62
+ with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
63
+ log_content = f.read()
64
+
65
+ if 'all-feature-done' in log_content:
66
+ return "Success: F0 feature extraction complete."
67
+ else:
68
+ return "Error extracting F0 feature."
69
+
70
+ # Function to train index
71
+ def train_index(exp_dir1, version19):
72
+ exp_dir = f"logs/{exp_dir1}"
73
+ os.makedirs(exp_dir, exist_ok=True)
74
+ feature_dir = f"{exp_dir}/3_feature768" if version19 == "v2" else f"{exp_dir}/3_feature256"
75
+
76
+ if not os.path.exists(feature_dir) or len(os.listdir(feature_dir)) == 0:
77
+ return "Please run feature extraction first."
78
+
79
+ npys = [np.load(f"{feature_dir}/{name}") for name in sorted(os.listdir(feature_dir))]
80
+ big_npy = np.concatenate(npys, axis=0)
81
+ big_npy_idx = np.arange(big_npy.shape[0])
82
+ np.random.shuffle(big_npy_idx)
83
+ big_npy = big_npy[big_npy_idx]
84
+
85
+ if big_npy.shape[0] > 2e5:
86
+ big_npy = MiniBatchKMeans(n_clusters=10000, batch_size=256, init="random").fit(big_npy).cluster_centers_
87
+
88
+ np.save(f"{exp_dir}/total_fea.npy", big_npy)
89
+ n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
90
+
91
+ index = faiss.index_factory(768 if version19 == "v2" else 256, f"IVF{n_ivf},Flat")
92
+ index.train(big_npy)
93
+ faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")
94
+
95
+ batch_size_add = 8192
96
+ for i in range(0, big_npy.shape[0], batch_size_add):
97
+ index.add(big_npy[i:i + batch_size_add])
98
+
99
+ faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")
100
+ return f"Indexing completed. Index saved to {exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index"
101
+
102
+
103
+
104
 
105
  def run_inference(model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection):
106
  # Setting paths for model and index files