File size: 14,741 Bytes
7ef691e
 
 
 
a2b48b4
 
 
 
 
 
 
 
fc2c973
 
 
 
a2b48b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef691e
fc2c973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef691e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2c973
 
 
7ef691e
 
 
 
 
1b80b27
92f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc2c973
136a5c7
24075c8
fc2c973
 
 
 
 
 
 
 
 
 
 
ff79d12
 
 
fc2c973
 
ff79d12
 
 
fc2c973
ff79d12
fc2c973
 
ff79d12
7ef691e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import shutil
from os import listdir
from colorama import Fore
import os
import shutil
import numpy as np
import faiss
from pathlib import Path
from sklearn.cluster import MiniBatchKMeans
import traceback
import gradio as gr
import pathlib
import json
from random import shuffle
from subprocess import Popen, PIPE, STDOUT

# Function to preprocess data
def preprocess_data(model_name, dataset_folder):
    logs_path = f'/content/RVC/logs/{model_name}'
    temp_DG_path = '/content/temp_DG'

    if os.path.exists(logs_path):
        print("Model already exists, This will be resume training.")
        os.makedirs(temp_DG_path, exist_ok=True)

        # Move files for resuming training
        for item in os.listdir(logs_path):
            item_path = os.path.join(logs_path, item)
            if os.path.isfile(item_path) and (item.startswith('D_') or item.startswith('G_')) and item.endswith('.pth'):
                shutil.copy(item_path, temp_DG_path)

        for item in os.listdir(logs_path):
            item_path = os.path.join(logs_path, item)
            if os.path.isfile(item_path):
                os.remove(item_path)
            elif os.path.isdir(item_path):
                shutil.rmtree(item_path)

        for file_name in os.listdir(temp_DG_path):
            shutil.move(os.path.join(temp_DG_path, file_name), logs_path)

        shutil.rmtree(temp_DG_path)

    if len(os.listdir(dataset_folder)) < 1:
        return "Error: Dataset folder is empty."

    os.makedirs(f'./logs/{model_name}', exist_ok=True)
    !python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0

    with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
        log_content = f.read()

    if 'end preprocess' in log_content:
        return "Success: Data preprocessing complete."
    else:
        return "Error preprocessing data. Check your dataset folder."

# Function to extract F0 feature
def extract_f0_feature(model_name, f0method):
    if f0method != "rmvpe_gpu":
        !python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}
    else:
        !python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True

    with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
        log_content = f.read()

    if 'all-feature-done' in log_content:
        return "Success: F0 feature extraction complete."
    else:
        return "Error extracting F0 feature."

# Function to train index
def train_index(exp_dir1, version19):
    exp_dir = f"logs/{exp_dir1}"
    os.makedirs(exp_dir, exist_ok=True)
    feature_dir = f"{exp_dir}/3_feature768" if version19 == "v2" else f"{exp_dir}/3_feature256"

    if not os.path.exists(feature_dir) or len(os.listdir(feature_dir)) == 0:
        return "Please run feature extraction first."

    npys = [np.load(f"{feature_dir}/{name}") for name in sorted(os.listdir(feature_dir))]
    big_npy = np.concatenate(npys, axis=0)
    big_npy_idx = np.arange(big_npy.shape[0])
    np.random.shuffle(big_npy_idx)
    big_npy = big_npy[big_npy_idx]

    if big_npy.shape[0] > 2e5:
        big_npy = MiniBatchKMeans(n_clusters=10000, batch_size=256, init="random").fit(big_npy).cluster_centers_

    np.save(f"{exp_dir}/total_fea.npy", big_npy)
    n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)

    index = faiss.index_factory(768 if version19 == "v2" else 256, f"IVF{n_ivf},Flat")
    index.train(big_npy)
    faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")

    batch_size_add = 8192
    for i in range(0, big_npy.shape[0], batch_size_add):
        index.add(big_npy[i:i + batch_size_add])

    faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index")
    return f"Indexing completed. Index saved to {exp_dir}/added_IVF{n_ivf}_Flat_nprobe_1_{exp_dir1}_{version19}.index"





now_dir = os.getcwd()

def click_train(exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12, 
                if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17, 
                if_save_every_weights18, version19):
    exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
    os.makedirs(exp_dir, exist_ok=True)
    gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
    feature_dir = (
        "%s/3_feature256" % (exp_dir)
        if version19 == "v1"
        else "%s/3_feature768" % (exp_dir)
    )
    
    if if_f0_3:
        f0_dir = "%s/2a_f0" % (exp_dir)
        f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
        names = (
            set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
            & set([name.split(".")[0] for name in os.listdir(feature_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
        )
    else:
        names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
            [name.split(".")[0] for name in os.listdir(feature_dir)]
        )
    
    opt = []
    for name in names:
        if if_f0_3:
            opt.append(
                "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
                % (
                    gt_wavs_dir.replace("\\", "\\\\"),
                    name,
                    feature_dir.replace("\\", "\\\\"),
                    name,
                    f0_dir.replace("\\", "\\\\"),
                    name,
                    f0nsf_dir.replace("\\", "\\\\"),
                    name,
                    spk_id5,
                )
            )
        else:
            opt.append(
                "%s/%s.wav|%s/%s.npy|%s"
                % (
                    gt_wavs_dir.replace("\\", "\\\\"),
                    name,
                    feature_dir.replace("\\", "\\\\"),
                    name,
                    spk_id5,
                )
            )
    
    fea_dim = 256 if version19 == "v1" else 768
    if if_f0_3:
        for _ in range(2):
            opt.append(
                "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
                % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
            )
    else:
        for _ in range(2):
            opt.append(
                "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
                % (now_dir, sr2, now_dir, fea_dim, spk_id5)
            )
    
    shuffle(opt)
    with open("%s/filelist.txt" % exp_dir, "w") as f:
        f.write("\n".join(opt))
    
    print("Filelist generated")
    print("Using gpus:", gpus16)
    
    if pretrained_G14 == "":
        print("No pretrained Generator")
    if pretrained_D15 == "":
        print("No pretrained Discriminator")
    
    if version19 == "v1" or sr2 == "40k":
        config_path = "configs/v1/%s.json" % sr2
    else:
        config_path = "configs/v2/%s.json" % sr2
    config_save_path = os.path.join(exp_dir, "config.json")
    if not pathlib.Path(config_save_path).exists():
        with open(config_save_path, "w", encoding="utf-8") as f:
            with open(config_path, "r") as config_file:
                config_data = json.load(config_file)
                json.dump(
                    config_data,
                    f,
                    ensure_ascii=False,
                    indent=4,
                    sort_keys=True,
                )
    
    cmd = (
        'python infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
        % (
            exp_dir1,
            sr2,
            1 if if_f0_3 else 0,
            batch_size12,
            gpus16,
            total_epoch11,
            save_epoch10,
            "-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
            "-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
            1 if if_save_latest13 == True else 0,
            1 if if_cache_gpu17 == True else 0,
            1 if if_save_every_weights18 == True else 0,
            version19,
        )
    )
    
    # Capture output
    p = Popen(cmd, shell=True, cwd=now_dir, stdout=PIPE, stderr=STDOUT, bufsize=1, universal_newlines=True)
    
    # Print output
    output_log = ""
    for line in p.stdout:
        print(line.strip())
        output_log += line.strip() + "\n"
    
    p.wait()
    return output_log


def launch_training(model_name, epochs, save_frequency, batch_size):
    sample_rate = '32k'
    OV2 = True
    G_file = f'assets/pretrained_v2/f0Ov2Super{sample_rate}G.pth' if OV2 else f'assets/pretrained_v2/f0G{sample_rate}.pth'
    D_file = f'assets/pretrained_v2/f0Ov2Super{sample_rate}D.pth' if OV2 else f'assets/pretrained_v2/f0D{sample_rate}.pth'
    
    # Call the training function
    training_log = click_train(
        model_name, 
        sample_rate, 
        True, 0, save_frequency, 
        epochs, batch_size, True, 
        G_file, D_file, 0, False, 
        True, 'v2'
    )
    
    return training_log




def run_inference(model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection):
    # Setting paths for model and index files
    model_filename = model_name + '.pth'
    index_temp = 'Index_Temp'
    
    # Ensure Index_Temp exists
    if not os.path.exists(index_temp):
        os.mkdir(index_temp)
        print("Index_Temp folder created.")
    else:
        print("Index_Temp folder found.")
    
    # Copy .index file to Index_Temp
    index_file_path = os.path.join('logs/', model_name, '')
    for file_name in listdir(index_file_path):
        if file_name.startswith('added') and file_name.endswith('.index'):
            shutil.copy(index_file_path + file_name, os.path.join(index_temp, file_name))
            print('Index file copied successfully.')
    
    # Get the .index file
    indexfile_directory = os.getcwd() + '/' + index_temp
    files = os.listdir(indexfile_directory)
    index_filename = files[0] if files else None
    if index_filename is None:
        raise ValueError("Index file not found.")
    
    shutil.rmtree(index_temp)
    
    model_path = "assets/weights/" + model_filename
    index_path = os.path.join('logs', model_name, index_filename)
    
    if not os.path.exists(input_path):
        raise ValueError(f"{input_path} was not found.")
    
    os.environ['index_root'] = os.path.dirname(index_path)
    index_path = os.path.basename(index_path)
    
    os.environ['weight_root'] = os.path.dirname(model_path)
    
    # Run the command
    cmd = f"python tools/cmd/infer_cli.py --f0up_key {pitch} --input_path {input_path} --index_path {index_path} --f0method {f0_method} --opt_path {save_as} --model_name {os.path.basename(model_path)} --index_rate {index_rate} --device 'cuda:0' --is_half True --filter_radius 3 --resample_sr 0 --rms_mix_rate {volume_normalization} --protect {consonant_protection}"
    os.system(f"rm -f {save_as}")
    os.system(cmd)
    
    return f"Inference completed, output saved at {save_as}.", save_as




# Gradio Interface

with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("# RVC V2 - EASY GUI")
    with gr.Row():
        with gr.Tab("Inference"):
            with gr.Row():
                model_name = gr.Textbox(label="Model Name For Inference")
            with gr.Row():
                input_path = gr.Audio(label="Input Audio Path", type="filepath")
            with gr.Row():
                with gr.Accordion("Inference Settings"):
                    pitch = gr.Slider(minimum=-12, maximum=12, step=1, label="Pitch", value=0)
                    f0_method = gr.Dropdown(choices=["rmvpe", "pm", "harvest"], label="f0 Method", value="rmvpe")
                    index_rate = gr.Slider(minimum=0, maximum=1, step=0.01, label="Index Rate", value=0.5)
                    volume_normalization = gr.Slider(minimum=0, maximum=1, step=0.01, label="Volume Normalization", value=0)
                    consonant_protection = gr.Slider(minimum=0, maximum=1, step=0.01, label="Consonant Protection", value=0.5)
            with gr.Row():
                save_as = gr.Textbox(value="/content/RVC/audios/output_audio.wav", label="Output Audio Path")
                
            run_btn = gr.Button("Run Inference")
            with gr.Row():
                output_message = gr.Textbox(label="Output Message",interactive=False)
                output_audio = gr.Audio(label="Output Audio",interactive=False)
            #run_btn.click(run_inference, [model_name, pitch, input_path, f0_method, save_as, index_rate, volume_normalization, consonant_protection], output_message)

        with gr.Tab("Training"):
            with gr.TabItem("Create Index and stuff"):
                model_name = gr.Textbox(label="Model Name (No spaces or symbols)")
                dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset")
                f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu")
                preprocess_btn = gr.Button("Start Preprocessing")
                f0_btn = gr.Button("Extract F0 Feature")
                train_btn = gr.Button("Train Index")
                preprocess_output = gr.Textbox(label="Preprocessing Log")
                f0_output = gr.Textbox(label="F0 Feature Extraction Log")
                train_output = gr.Textbox(label="Training Log")

                preprocess_btn.click(preprocess_data, inputs=[model_name, dataset_folder], outputs=preprocess_output)
                f0_btn.click(extract_f0_feature, inputs=[model_name, f0method], outputs=f0_output)
                train_btn.click(train_index, inputs=[model_name, "v2"], outputs=train_output)
            with gr.TabItem("Train Your Model"):
                model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name", interactive=True)
                epochs_slider = gr.Slider(minimum=50, maximum=2000, value=200, step=10, label="Epochs", interactive=True)
                save_frequency_slider = gr.Slider(minimum=10, maximum=100, value=50, step=10, label="Save Frequency", interactive=True)
                batch_size_slider = gr.Slider(minimum=1, maximum=20, value=8, step=1, label="Batch Size", interactive=True)
    
                train_button = gr.Button("Train Model", interactive=True)
                training_output = gr.Textbox(label="Training Log", interactive=False)
    
                train_button.click(launch_training, inputs=[model_name_input, epochs_slider, save_frequency_slider, batch_size_slider], outputs=training_output)
    
demo.launch()