Edit model card

SentenceTransformer based on jinaai/jina-embeddings-v3

This is a sentence-transformers model finetuned from jinaai/jina-embeddings-v3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Finetuned from jinaai/jina-embeddings-v3 (trained with msmarco-v3 dataset).

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embeddings-v3
  • Maximum Sequence Length: 8194 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (transformer): Transformer(
    (auto_model): XLMRobertaLoRA(
      (roberta): XLMRobertaModel(
        (embeddings): XLMRobertaEmbeddings(
          (word_embeddings): ParametrizedEmbedding(
            250002, 1024, padding_idx=1
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (token_type_embeddings): ParametrizedEmbedding(
            1, 1024
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
        )
        (emb_drop): Dropout(p=0.1, inplace=False)
        (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (encoder): XLMRobertaEncoder(
          (layers): ModuleList(
            (0-23): 24 x Block(
              (mixer): MHA(
                (rotary_emb): RotaryEmbedding()
                (Wqkv): ParametrizedLinearResidual(
                  in_features=1024, out_features=3072, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (inner_attn): FlashSelfAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (inner_cross_attn): FlashCrossAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (out_proj): ParametrizedLinear(
                  in_features=1024, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout1): Dropout(p=0.1, inplace=False)
              (drop_path1): StochasticDepth(p=0.0, mode=row)
              (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): ParametrizedLinear(
                  in_features=1024, out_features=4096, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (fc2): ParametrizedLinear(
                  in_features=4096, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout2): Dropout(p=0.1, inplace=False)
              (drop_path2): StochasticDepth(p=0.0, mode=row)
              (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
          )
        )
        (pooler): XLMRobertaPooler(
          (dense): ParametrizedLinear(
            in_features=1024, out_features=1024, bias=True
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (activation): Tanh()
        )
      )
    )
  )
  (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (normalizer): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BlackBeenie/jina-embeddings-v3-msmarco-v3-bpr")
# Run inference
sentences = [
    'what is a fermentation lock used for',
    'The fermentation lock or airlock is a device used in beer brewing and wine making that allows carbon dioxide released by the beer to escape the fermenter, while not allowing air to enter the fermenter, thus avoiding oxidation. There are two main designs for the fermentation lock, or airlock.',
    'Remember, fermentation is a method of preserving food. Leaving it on your counter gives it more time for the LAB activity to increase â\x80\x94 which, in turn, lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 498,970 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 4 tokens
    • mean: 9.93 tokens
    • max: 37 tokens
    • min: 17 tokens
    • mean: 90.01 tokens
    • max: 239 tokens
    • min: 23 tokens
    • mean: 88.24 tokens
    • max: 258 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    how much does it cost to paint a interior house Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426. Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).
    when is s corp taxes due If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation. Before Jan. 1, 2026 After Dec. 31, 2025 Starting with 2016 tax returns, all. other C corps besides Dec. 31 and. June 30 year-ends (including those with. other fiscal year-ends) will be due on. the 15th of the 4th month after the.
    what are disaccharides Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond. Disaccharides- Another type of carbohydrate. How many sugar units are disaccharides composed of?_____ What elements make up disaccharides? _____ How does the body use disaccharides? _____ There is no chemical test for disaccharides. Table sugar (white granulated sugar) is an example of a disaccharide. List some foods that contain a lot of disaccharides: _____
  • Loss: beir.losses.bpr_loss.BPRLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 8
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss
0.0321 500 1.7204
0.0641 1000 0.6847
0.0962 1500 0.4782
0.1283 2000 0.4001
0.1603 2500 0.3773
0.1924 3000 0.3538
0.2245 3500 0.3424
0.2565 4000 0.3375
0.2886 4500 0.3286
0.3207 5000 0.3289
0.3527 5500 0.3266
0.3848 6000 0.3226
0.4169 6500 0.3266
0.4489 7000 0.3262
0.4810 7500 0.3241
0.5131 8000 0.3216
0.5451 8500 0.3232
0.5772 9000 0.3186
0.6092 9500 0.3194
0.6413 10000 0.314
0.6734 10500 0.3217
0.7054 11000 0.3156
0.7375 11500 0.3244
0.7696 12000 0.3189
0.8016 12500 0.3235
0.8337 13000 0.3305
0.8658 13500 0.3284
0.8978 14000 0.3213
0.9299 14500 0.3283
0.9620 15000 0.3219
0.9940 15500 0.3247
1.0 15593 -
1.0261 16000 0.3287
1.0582 16500 0.3346
1.0902 17000 0.3245
1.1223 17500 0.3202
1.1544 18000 0.332
1.1864 18500 0.3298
1.2185 19000 0.332
1.2506 19500 0.3258
1.2826 20000 0.3291
1.3147 20500 0.334
1.3468 21000 0.3328
1.3788 21500 0.3362
1.4109 22000 0.3348
1.4430 22500 0.3402
1.4750 23000 0.3346
1.5071 23500 0.339
1.5392 24000 0.3406
1.5712 24500 0.3239
1.6033 25000 0.3275
1.6353 25500 0.3287
1.6674 26000 0.3271
1.6995 26500 0.3337
1.7315 27000 0.3352
1.7636 27500 0.3244
1.7957 28000 0.3418
1.8277 28500 0.349
1.8598 29000 0.3395
1.8919 29500 0.3386
1.9239 30000 0.3379
1.9560 30500 0.3412
1.9881 31000 0.3364
2.0 31186 -
2.0201 31500 0.3386
2.0522 32000 0.3417
2.0843 32500 0.3362
2.1163 33000 0.3251
2.1484 33500 0.3563
2.1805 34000 0.3341
2.2125 34500 0.3478
2.2446 35000 0.3389
2.2767 35500 0.342
2.3087 36000 0.3467
2.3408 36500 0.3419
2.3729 37000 0.3513
2.4049 37500 0.3441
2.4370 38000 0.3484
2.4691 38500 0.3457
2.5011 39000 0.3503
2.5332 39500 0.3446
2.5653 40000 0.3461
2.5973 40500 0.3399
2.6294 41000 0.3405
2.6615 41500 0.3382
2.6935 42000 0.3388
2.7256 42500 0.3378
2.7576 43000 0.336
2.7897 43500 0.3471
2.8218 44000 0.3563
2.8538 44500 0.3465
2.8859 45000 0.3501
2.9180 45500 0.3439
2.9500 46000 0.3546
2.9821 46500 0.3414
3.0 46779 -
3.0142 47000 0.3498
3.0462 47500 0.3484
3.0783 48000 0.3496
3.1104 48500 0.3392
3.1424 49000 0.3583
3.1745 49500 0.3505
3.2066 50000 0.3547
3.2386 50500 0.3469
3.2707 51000 0.3489
3.3028 51500 0.3473
3.3348 52000 0.3579
3.3669 52500 0.3523
3.3990 53000 0.3427
3.4310 53500 0.3685
3.4631 54000 0.3479
3.4952 54500 0.355
3.5272 55000 0.3464
3.5593 55500 0.3473
3.5914 56000 0.348
3.6234 56500 0.3426
3.6555 57000 0.3394
3.6876 57500 0.3454
3.7196 58000 0.345
3.7517 58500 0.3411
3.7837 59000 0.3557
3.8158 59500 0.3505
3.8479 60000 0.3605
3.8799 60500 0.3554
3.9120 61000 0.349
3.9441 61500 0.3629
3.9761 62000 0.3456
4.0 62372 -
4.0082 62500 0.3562
4.0403 63000 0.3531
4.0723 63500 0.3569
4.1044 64000 0.3494
4.1365 64500 0.3513
4.1685 65000 0.3599
4.2006 65500 0.3487
4.2327 66000 0.3561
4.2647 66500 0.3583
4.2968 67000 0.3539
4.3289 67500 0.3614
4.3609 68000 0.3558
4.3930 68500 0.3485
4.4251 69000 0.3715
4.4571 69500 0.3585
4.4892 70000 0.3571
4.5213 70500 0.3498
4.5533 71000 0.3576
4.5854 71500 0.3498
4.6175 72000 0.3507
4.6495 72500 0.3436
4.6816 73000 0.3461
4.7137 73500 0.3451
4.7457 74000 0.3554
4.7778 74500 0.354
4.8099 75000 0.3514
4.8419 75500 0.3688
4.8740 76000 0.3573
4.9060 76500 0.3557
4.9381 77000 0.3607
4.9702 77500 0.3488
5.0 77965 -
5.0022 78000 0.3555
5.0343 78500 0.3596
5.0664 79000 0.3572
5.0984 79500 0.355
5.1305 80000 0.3427
5.1626 80500 0.3669
5.1946 81000 0.3578
5.2267 81500 0.3589
5.2588 82000 0.3586
5.2908 82500 0.3581
5.3229 83000 0.3607
5.3550 83500 0.3563
5.3870 84000 0.3597
5.4191 84500 0.3712
5.4512 85000 0.3574
5.4832 85500 0.359
5.5153 86000 0.3598
5.5474 86500 0.3604
5.5794 87000 0.3535
5.6115 87500 0.3606
5.6436 88000 0.3469
5.6756 88500 0.3568
5.7077 89000 0.3497
5.7398 89500 0.3597
5.7718 90000 0.3582
5.8039 90500 0.3556
5.8360 91000 0.3716
5.8680 91500 0.3615
5.9001 92000 0.3532
5.9321 92500 0.3747
5.9642 93000 0.3521
5.9963 93500 0.362
6.0 93558 -
6.0283 94000 0.3701
6.0604 94500 0.3636
6.0925 95000 0.3556
6.1245 95500 0.3508
6.1566 96000 0.3626
6.1887 96500 0.3618
6.2207 97000 0.3683
6.2528 97500 0.362
6.2849 98000 0.3534
6.3169 98500 0.3643
6.3490 99000 0.36
6.3811 99500 0.3592
6.4131 100000 0.3606
6.4452 100500 0.369
6.4773 101000 0.3607
6.5093 101500 0.3683
6.5414 102000 0.3648
6.5735 102500 0.3481
6.6055 103000 0.3565
6.6376 103500 0.3555
6.6697 104000 0.347
6.7017 104500 0.3585
6.7338 105000 0.3553
6.7659 105500 0.3539
6.7979 106000 0.3638
6.8300 106500 0.3674
6.8621 107000 0.3674
6.8941 107500 0.3617
6.9262 108000 0.3655
6.9583 108500 0.3593
6.9903 109000 0.3603
7.0 109151 -
7.0224 109500 0.3614
7.0544 110000 0.3655
7.0865 110500 0.3597
7.1186 111000 0.3443
7.1506 111500 0.3781
7.1827 112000 0.3587
7.2148 112500 0.3676
7.2468 113000 0.357
7.2789 113500 0.3639
7.3110 114000 0.3691
7.3430 114500 0.3606
7.3751 115000 0.3679
7.4072 115500 0.3697
7.4392 116000 0.3726
7.4713 116500 0.3603
7.5034 117000 0.3655
7.5354 117500 0.3639
7.5675 118000 0.3557
7.5996 118500 0.358
7.6316 119000 0.3526
7.6637 119500 0.3579
7.6958 120000 0.3584
7.7278 120500 0.3507
7.7599 121000 0.3472
7.7920 121500 0.3757
7.8240 122000 0.3717
7.8561 122500 0.3646
7.8882 123000 0.3662
7.9202 123500 0.3668
7.9523 124000 0.3677
7.9844 124500 0.3588
8.0 124744 -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BlackBeenie/jina-embeddings-v3-msmarco-v3-bpr

Finetuned
(15)
this model