Edit model card

EXAONE-3.0-8B-it

[!WARNING]

https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template

chat template이 적용 μ•ˆλ  수 μžˆμŠ΅λ‹ˆλ‹€.

llama-cpp-python은 jinja2λ₯Ό μ‚¬μš©ν•˜λ―€λ‘œ ν…œν”Œλ¦Ώμ΄ μ μš©λ˜λ‚˜, μ΄μ™Έμ˜ λŸ°νƒ€μž„μ—μ„œλŠ” μ μš©λ˜μ§€ μ•Šμ„ 수 μžˆμŒμ— μœ μ˜ν•˜μ„Έμš”.

from llama_cpp import Llama

llm = Llama.from_pretrained(
    repo_id="Bingsu/exaone-3.0-7.8b-it",
    filename="exaone-3.0-7.8B-it-Q8_0.gguf"
)
llama_model_loader: loaded meta data with 34 key-value pairs and 291 tensors from /root/.cache/huggingface/hub/models--Bingsu--exaone-3.0-7.8b-it/snapshots/c7b9c43a7d1db6509b40e9b18f10ae0554b3d4cb/./exaone-3.0-7.8B-it-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Exaone 3.0 7.8b It
llama_model_loader: - kv   3:                           general.finetune str              = it
llama_model_loader: - kv   4:                           general.basename str              = exaone-3.0
llama_model_loader: - kv   5:                         general.size_label str              = 7.8B
llama_model_loader: - kv   6:                            general.license str              = other
llama_model_loader: - kv   7:                       general.license.name str              = exaone
llama_model_loader: - kv   8:                       general.license.link str              = LICENSE
llama_model_loader: - kv   9:                               general.tags arr[str,2]       = ["lg-ai", "exaone"]
llama_model_loader: - kv  10:                          general.languages arr[str,2]       = ["en", "ko"]
llama_model_loader: - kv  11:                          llama.block_count u32              = 32
llama_model_loader: - kv  12:                       llama.context_length u32              = 4096
llama_model_loader: - kv  13:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  14:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  15:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  16:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  17:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  18:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  19:                          general.file_type u32              = 7
llama_model_loader: - kv  20:                           llama.vocab_size u32              = 102400
llama_model_loader: - kv  21:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  22:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,102400]  = ["[PAD]", "[BOS]", "[EOS]", "[UNK]", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,102400]  = [3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,101782]  = ["t h", "Δ  a", "Δ  Γ­", "i n", "Δ  t...
llama_model_loader: - kv  28:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  29:                tokenizer.ggml.eos_token_id u32              = 361
llama_model_loader: - kv  30:            tokenizer.ggml.unknown_token_id u32              = 3
llama_model_loader: - kv  31:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {% for message in messages %}{% if lo...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q8_0:  226 tensors
llm_load_vocab: special tokens cache size = 362
llm_load_vocab: token to piece cache size = 0.6622 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 102400
llm_load_print_meta: n_merges         = 101782
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 7.82 B
llm_load_print_meta: model size       = 7.74 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Exaone 3.0 7.8b It
llm_load_print_meta: BOS token        = 1 '[BOS]'
llm_load_print_meta: EOS token        = 361 '[|endofturn|]'
llm_load_print_meta: UNK token        = 3 '[UNK]'
llm_load_print_meta: PAD token        = 0 '[PAD]'
llm_load_print_meta: LF token         = 490 'Γ„'
llm_load_print_meta: EOT token        = 42 '<|endoftext|>'
llm_load_print_meta: max token length = 48
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    yes
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA L4, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.14 MiB
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/33 layers to GPU
llm_load_tensors:        CPU buffer size =  7923.02 MiB
............................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:  CUDA_Host KV buffer size =    64.00 MiB
llama_new_context_with_model: KV self size  =   64.00 MiB, K (f16):   32.00 MiB, V (f16):   32.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.39 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   633.00 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.01 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 356
AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
Model metadata: {'tokenizer.ggml.unknown_token_id': '3', 'tokenizer.ggml.eos_token_id': '361', 'general.quantization_version': '2', 'tokenizer.ggml.model': 'gpt2', 'tokenizer.ggml.add_space_prefix': 'false', 'llama.rope.dimension_count': '128', 'llama.vocab_size': '102400', 'general.file_type': '7', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.rope.freq_base': '500000.000000', 'tokenizer.ggml.bos_token_id': '1', 'llama.attention.head_count': '32', 'general.architecture': 'llama', 'llama.attention.head_count_kv': '8', 'llama.block_count': '32', 'tokenizer.ggml.padding_token_id': '0', 'general.basename': 'exaone-3.0', 'tokenizer.ggml.pre': 'default', 'llama.context_length': '4096', 'general.name': 'Exaone 3.0 7.8b It', 'general.type': 'model', 'general.size_label': '7.8B', 'general.finetune': 'it', 'general.license.name': 'exaone', 'tokenizer.chat_template': "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]\n' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '\n' }}{% else %}{{ '[|endofturn|]\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}", 'general.license.link': 'LICENSE', 'general.license': 'other', 'llama.feed_forward_length': '14336', 'llama.embedding_length': '4096'}
Available chat formats from metadata: chat_template.default
Using gguf chat template: {% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]
' }}{% endif %}{{ '[|' + message['role'] + '|]' + message['content'] }}{% if message['role'] == 'user' %}{{ '
' }}{% else %}{{ '[|endofturn|]
' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '[|assistant|]' }}{% endif %}
Using chat eos_token: [|endofturn|]
Using chat bos_token: [BOS]
llm.create_chat_completion(
      messages = [
          {
              "role": "system",
              "content": "You are EXAONE model from LG AI Research, a helpful assistant."
        },
          {
              "role": "user",
              "content": "λ‹€ ν•΄μ€¬μž–μ•„"
          }
      ]
)
llama_print_timings:        load time =    1812.86 ms
llama_print_timings:      sample time =      20.39 ms /   220 runs   (    0.09 ms per token, 10788.54 tokens per second)
llama_print_timings: prompt eval time =    1812.72 ms /    38 tokens (   47.70 ms per token,    20.96 tokens per second)
llama_print_timings:        eval time =   33280.46 ms /   219 runs   (  151.97 ms per token,     6.58 tokens per second)
llama_print_timings:       total time =   35397.95 ms /   257 tokens
{'id': 'chatcmpl-451b0538-c70d-45f4-924b-106f5ac3c02f',
 'object': 'chat.completion',
 'created': 1723204952,
 'model': '/root/.cache/huggingface/hub/models--Bingsu--exaone-3.0-7.8b-it/snapshots/c7b9c43a7d1db6509b40e9b18f10ae0554b3d4cb/./exaone-3.0-7.8B-it-Q8_0.gguf',
 'choices': [{'index': 0,
   'message': {'role': 'assistant',
    'content': 'λ„€, μ•Œκ² μŠ΅λ‹ˆλ‹€. 이전에 λ§μ”€ν•˜μ‹  λ‚΄μš©μ„ μš”μ•½ν•΄ λ“œλ¦¬κ² μŠ΅λ‹ˆλ‹€:\n\n1. EXAONE 2.0 λͺ¨λΈμ˜ νŠΉμ§•:\n   - 7.8B instruction νŠœλ‹ νŒŒλΌλ―Έν„°\n   - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n   - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n2. 연ꡬ λ…Όλ¬Έ:\n   - "EXAONE 2.0: An Open-Retrieval Large Language Model for Dense Retrieval and Question Answering"\n\n3. μ£Όμš” μ„±κ³Ό:\n   - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n   - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n4. ν™œμš© 사둀:\n   - 고객 지원 챗봇\n   - 법λ₯  λ¬Έμ„œ μš”μ•½\n   - 의료 정보 제곡\n\n5. 기술적 μ„ΈλΆ€ 사항:\n   - 7.8B instruction νŠœλ‹ νŒŒλΌλ―Έν„°\n   - ν•œκ΅­μ–΄μ™€ μ˜μ–΄μ—μ„œ μš°μˆ˜ν•œ μ„±λŠ₯\n   - λ‹€μ–‘ν•œ μž‘μ—…μ—μ„œ 높은 정확도\n\n이 외에 μΆ”κ°€λ‘œ κΆκΈˆν•œ 사항이 μžˆμœΌμ‹œλ©΄ μ–Έμ œλ“ μ§€ 말씀해 μ£Όμ„Έμš”!'},
   'logprobs': None,
   'finish_reason': 'stop'}],
 'usage': {'prompt_tokens': 38, 'completion_tokens': 219, 'total_tokens': 257}}
Downloads last month
3,452
Safetensors
Model size
7.82B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.