phi3.5-mini-adapter_v2
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1344
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
17.6422 | 0.4545 | 10 | 17.2166 |
13.0308 | 0.9091 | 20 | 12.5267 |
8.4662 | 1.3636 | 30 | 7.9483 |
2.4521 | 1.8182 | 40 | 1.3982 |
0.3917 | 2.2727 | 50 | 0.3427 |
0.3042 | 2.7273 | 60 | 0.3092 |
0.2051 | 3.1818 | 70 | 0.2451 |
0.2043 | 3.6364 | 80 | 0.2022 |
0.1599 | 4.0909 | 90 | 0.1907 |
0.1658 | 4.5455 | 100 | 0.1727 |
0.1527 | 5.0 | 110 | 0.1595 |
0.1281 | 5.4545 | 120 | 0.1501 |
0.1079 | 5.9091 | 130 | 0.1435 |
0.0896 | 6.3636 | 140 | 0.1369 |
0.097 | 6.8182 | 150 | 0.1340 |
0.0841 | 7.2727 | 160 | 0.1449 |
0.0771 | 7.7273 | 170 | 0.1344 |
Framework versions
- PEFT 0.11.1
- Transformers 4.43.1
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for BTGFM/phi3.5-mini-adapter_v2
Base model
microsoft/Phi-3.5-mini-instruct