BAAI
/

Edit model card

Emu3: Next-Token Prediction is All You Need

Emu3 Team, BAAI

| Project Page | Paper | πŸ€—HF Models | github | Demo |

arch.

We introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token prediction! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences.

Emu3 excels in both generation and perception

Emu3 outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.

comparison.

Highlights

  • Emu3 is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles.
  • Emu3 shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM.
  • Emu3 simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next.

Quickstart

from PIL import Image
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
from transformers.generation.configuration_utils import GenerationConfig
import torch

import sys
sys.path.append(PATH_TO_BAAI_Emu3-Chat_MODEL)
from processing_emu3 import Emu3Processor

# model path
EMU_HUB = "BAAI/Emu3-Chat"
VQ_HUB = "BAAI/Emu3-VisionTokenier"

# prepare model and processor
model = AutoModelForCausalLM.from_pretrained(
    EMU_HUB,
    device_map="cuda:0",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)

# prepare input
text = "Please describe the image"
image = Image.open("assets/demo.png")

inputs = processor(
    text=text,
    image=image,
    mode='U',
    return_tensors="pt",
    padding="longest",
)

# prepare hyper parameters
GENERATION_CONFIG = GenerationConfig(
    pad_token_id=tokenizer.pad_token_id,
    bos_token_id=tokenizer.bos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=1024,
)

# generate
outputs = model.generate(
    inputs.input_ids.to("cuda:0"),
    GENERATION_CONFIG,
    attention_mask=inputs.attention_mask.to("cuda:0"),
)

outputs = outputs[:, inputs.input_ids.shape[-1]:]
print(processor.batch_decode(outputs, skip_special_tokens=True)[0])
Downloads last month
4,755
Safetensors
Model size
8.49B params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Spaces using BAAI/Emu3-Chat 3

Collection including BAAI/Emu3-Chat