ESM-2 Full Finetune for Binding Sites
This model is a full finetune of ESM-2, to illustrate how full finetuning overfits and generalizes quite poorly compared to
LoRA and QLoRA finetuning. This model was finetuned on the 600K dataset. We also note that on the 24GB A10 GPU, the batch size
has to be significantly smaller than when using LoRA or QLoRA. To finetune a similar model, use
this script.
Overfitting
Train metrics:
{'eval_loss': 0.13651661574840546,
'eval_accuracy': 0.9656322509450104,
'eval_precision': 0.38616650354104665,
'eval_recall': 0.9618091516702236,
'eval_f1': 0.55107594226701,
'eval_auc': 0.9637635647574605,
'eval_mcc': 0.5977943918337999}
Test metrics:
{'eval_loss': 0.2910114824771881,
'eval_accuracy': 0.923270649115702,
'eval_precision': 0.14887069127765168,
'eval_recall': 0.533511928419524,
'eval_f1': 0.23278520670392827,
'eval_auc': 0.7327381144575454,
'eval_mcc': 0.25329082069818704}