|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from typing import Dict, List, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
from transformers.utils import is_torch_npu_available |
|
|
|
|
|
class GTEEmbeddidng(torch.nn.Module): |
|
def __init__(self, |
|
model_name: str = None, |
|
normalized: bool = True, |
|
use_fp16: bool = True, |
|
device: str = None |
|
): |
|
super().__init__() |
|
self.normalized = normalized |
|
if device: |
|
self.device = torch.device(device) |
|
else: |
|
if torch.cuda.is_available(): |
|
self.device = torch.device("cuda") |
|
elif torch.backends.mps.is_available(): |
|
self.device = torch.device("mps") |
|
elif is_torch_npu_available(): |
|
self.device = torch.device("npu") |
|
else: |
|
self.device = torch.device("cpu") |
|
use_fp16 = False |
|
self.use_fp16 = use_fp16 |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model = AutoModelForTokenClassification.from_pretrained( |
|
model_name, trust_remote_code=True, torch_dtype=torch.float16 if self.use_fp16 else None |
|
) |
|
self.vocab_size = self.model.config.vocab_size |
|
self.model.to(self.device) |
|
|
|
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list): |
|
|
|
result = defaultdict(int) |
|
unused_tokens = set([self.tokenizer.cls_token_id, self.tokenizer.eos_token_id, self.tokenizer.pad_token_id, |
|
self.tokenizer.unk_token_id]) |
|
|
|
for w, idx in zip(token_weights, input_ids): |
|
if idx not in unused_tokens and w > 0: |
|
token = self.tokenizer.decode([int(idx)]) |
|
if w > result[token]: |
|
result[token] = w |
|
return result |
|
|
|
@torch.no_grad() |
|
def encode(self, |
|
texts: None, |
|
dimension: int = None, |
|
max_length: int = 8192, |
|
batch_size: int = 16, |
|
return_dense: bool = True, |
|
return_sparse: bool = False): |
|
if dimension is None: |
|
dimension = self.model.config.hidden_size |
|
if isinstance(texts, str): |
|
texts = [texts] |
|
num_texts = len(texts) |
|
all_dense_vecs = [] |
|
all_token_weights = [] |
|
for n, i in enumerate(range(0, num_texts, batch_size)): |
|
batch = texts[i: i + batch_size] |
|
resulst = self._encode(batch, dimension, max_length, batch_size, return_dense, return_sparse) |
|
if return_dense: |
|
all_dense_vecs.append(resulst['dense_embeddings']) |
|
if return_sparse: |
|
all_token_weights.extend(resulst['token_weights']) |
|
all_dense_vecs = torch.cat(all_dense_vecs, dim=0) |
|
return { |
|
"dense_embeddings": all_dense_vecs, |
|
"token_weights": all_token_weights |
|
} |
|
|
|
@torch.no_grad() |
|
def _encode(self, |
|
texts: Dict[str, torch.Tensor] = None, |
|
dimension: int = None, |
|
max_length: int = 1024, |
|
batch_size: int = 16, |
|
return_dense: bool = True, |
|
return_sparse: bool = False): |
|
|
|
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length) |
|
text_input = {k: v.to(self.model.device) for k,v in text_input.items()} |
|
model_out = self.model(**text_input, return_dict=True) |
|
|
|
output = {} |
|
if return_dense: |
|
dense_vecs = model_out.last_hidden_state[:, 0, :dimension] |
|
if self.normalized: |
|
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1) |
|
output['dense_embeddings'] = dense_vecs |
|
if return_sparse: |
|
token_weights = torch.relu(model_out.logits).squeeze(-1) |
|
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(), |
|
text_input['input_ids'].cpu().numpy().tolist())) |
|
output['token_weights'] = token_weights |
|
|
|
return output |
|
|
|
def _compute_sparse_scores(self, embs1, embs2): |
|
scores = 0 |
|
for token, weight in embs1.items(): |
|
if token in embs2: |
|
scores += weight * embs2[token] |
|
return scores |
|
|
|
def compute_sparse_scores(self, embs1, embs2): |
|
scores = [self._compute_sparse_scores(emb1, emb2) for emb1, emb2 in zip(embs1, embs2)] |
|
return np.array(scores) |
|
|
|
def compute_dense_scores(self, embs1, embs2): |
|
scores = torch.sum(embs1*embs2, dim=-1).cpu().detach().numpy() |
|
return scores |
|
|
|
@torch.no_grad() |
|
def compute_scores(self, |
|
text_pairs: List[Tuple[str, str]], |
|
dimension: int = None, |
|
max_length: int = 1024, |
|
batch_size: int = 16, |
|
dense_weight=1.0, |
|
sparse_weight=0.1): |
|
text1_list = [text_pair[0] for text_pair in text_pairs] |
|
text2_list = [text_pair[1] for text_pair in text_pairs] |
|
embs1 = self.encode(text1_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True) |
|
embs2 = self.encode(text2_list, dimension, max_length, batch_size, return_dense=True, return_sparse=True) |
|
scores = self.compute_dense_scores(embs1['dense_embeddings'], embs2['dense_embeddings']) * dense_weight + \ |
|
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight |
|
scores = scores.tolist() |
|
return scores |
|
|
|
|
|
if __name__ == '__main__': |
|
gte = GTEEmbeddidng('Alibaba-NLP/gte-multilingual-base') |
|
docs = [ |
|
"黑龙江离俄罗斯很近", |
|
"哈尔滨是中国黑龙江省的省会,位于中国东北", |
|
"you are the hero" |
|
] |
|
print('docs', docs) |
|
embs = gte.encode(docs, return_dense=True,return_sparse=True) |
|
print('dense vecs', embs['dense_embeddings']) |
|
print('sparse vecs', embs['token_weights']) |
|
|