Update scripts/gte_embedding.py
Browse files- scripts/gte_embedding.py +32 -68
scripts/gte_embedding.py
CHANGED
@@ -1,42 +1,25 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import heapq
|
6 |
-
import json
|
7 |
-
import logging
|
8 |
-
import os
|
9 |
-
import queue
|
10 |
-
import sys
|
11 |
-
import time
|
12 |
-
from tqdm import tqdm
|
13 |
|
14 |
-
import torch
|
15 |
from collections import defaultdict
|
16 |
-
from
|
17 |
-
import numpy as np
|
18 |
-
import torch.distributed as dist
|
19 |
-
from torch import nn, Tensor
|
20 |
-
import torch.nn.functional as F
|
21 |
-
from transformers import AutoModel, AutoTokenizer
|
22 |
-
from transformers.file_utils import ModelOutput
|
23 |
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
-
class GTEEmbeddidng(nn.Module):
|
28 |
def __init__(self,
|
29 |
model_name: str = None,
|
30 |
normalized: bool = True,
|
31 |
-
pooling_method: str = 'cls',
|
32 |
use_fp16: bool = True,
|
33 |
device: str = None
|
34 |
):
|
35 |
super().__init__()
|
36 |
-
self.load_model(model_name)
|
37 |
-
self.vocab_size = self.model.config.vocab_size
|
38 |
self.normalized = normalized
|
39 |
-
self.pooling_method = pooling_method
|
40 |
if device:
|
41 |
self.device = torch.device(device)
|
42 |
else:
|
@@ -49,40 +32,13 @@ class GTEEmbeddidng(nn.Module):
|
|
49 |
else:
|
50 |
self.device = torch.device("cpu")
|
51 |
use_fp16 = False
|
52 |
-
self.
|
53 |
-
self.sparse_linear.to(self.device)
|
54 |
-
if use_fp16:
|
55 |
-
self.model.half()
|
56 |
-
self.sparse_linear.half()
|
57 |
-
|
58 |
-
def load_model(self, model_name):
|
59 |
-
if not os.path.exists(model_name):
|
60 |
-
cache_folder = os.getenv('HF_HUB_CACHE')
|
61 |
-
model_name = snapshot_download(repo_id=model_name,
|
62 |
-
cache_dir=cache_folder,
|
63 |
-
ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5'])
|
64 |
-
|
65 |
-
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
66 |
-
self.sparse_linear = torch.nn.Linear(in_features=self.model.config.hidden_size, out_features=1)
|
67 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
68 |
-
self.model.
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
logger.warring('The parameters of sparse linear is not found')
|
74 |
-
|
75 |
-
def dense_embedding(self, hidden_state, mask):
|
76 |
-
if self.pooling_method == 'cls':
|
77 |
-
return hidden_state[:, 0]
|
78 |
-
elif self.pooling_method == 'mean':
|
79 |
-
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
|
80 |
-
d = mask.sum(axis=1, keepdim=True).float()
|
81 |
-
return s / d
|
82 |
-
|
83 |
-
def sparse_embedding(self, hidden_state, input_ids, return_embedding: bool = True):
|
84 |
-
token_weights = torch.relu(self.sparse_linear(hidden_state))
|
85 |
-
return token_weights
|
86 |
|
87 |
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
|
88 |
# conver to dict
|
@@ -127,7 +83,7 @@ class GTEEmbeddidng(nn.Module):
|
|
127 |
|
128 |
@torch.no_grad()
|
129 |
def _encode(self,
|
130 |
-
texts: Dict[str, Tensor] = None,
|
131 |
dimension: int = None,
|
132 |
max_length: int = 1024,
|
133 |
batch_size: int = 16,
|
@@ -136,27 +92,22 @@ class GTEEmbeddidng(nn.Module):
|
|
136 |
|
137 |
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
|
138 |
text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
|
139 |
-
|
140 |
|
141 |
output = {}
|
142 |
if return_dense:
|
143 |
-
dense_vecs =
|
144 |
-
dense_vecs = dense_vecs[:, :dimension]
|
145 |
if self.normalized:
|
146 |
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
|
147 |
output['dense_embeddings'] = dense_vecs
|
148 |
if return_sparse:
|
149 |
-
token_weights =
|
150 |
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
|
151 |
text_input['input_ids'].cpu().numpy().tolist()))
|
152 |
output['token_weights'] = token_weights
|
153 |
|
154 |
return output
|
155 |
|
156 |
-
def load_pooler(self, model_dir):
|
157 |
-
sparse_state_dict = torch.load(os.path.join(model_dir, 'sparse_linear.pt'), map_location='cpu')
|
158 |
-
self.sparse_linear.load_state_dict(sparse_state_dict)
|
159 |
-
|
160 |
def _compute_sparse_scores(self, embs1, embs2):
|
161 |
scores = 0
|
162 |
for token, weight in embs1.items():
|
@@ -188,3 +139,16 @@ class GTEEmbeddidng(nn.Module):
|
|
188 |
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
|
189 |
scores = scores.tolist()
|
190 |
return scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
from collections import defaultdict
|
6 |
+
from typing import Dict, List, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
11 |
+
from transformers.utils import is_torch_npu_available
|
12 |
|
13 |
|
14 |
+
class GTEEmbeddidng(torch.nn.Module):
|
15 |
def __init__(self,
|
16 |
model_name: str = None,
|
17 |
normalized: bool = True,
|
|
|
18 |
use_fp16: bool = True,
|
19 |
device: str = None
|
20 |
):
|
21 |
super().__init__()
|
|
|
|
|
22 |
self.normalized = normalized
|
|
|
23 |
if device:
|
24 |
self.device = torch.device(device)
|
25 |
else:
|
|
|
32 |
else:
|
33 |
self.device = torch.device("cpu")
|
34 |
use_fp16 = False
|
35 |
+
self.use_fp16 = use_fp16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
self.model = AutoModelForTokenClassification.from_pretrained(
|
38 |
+
model_name, trust_remote_code=True, torch_dtype=torch.float16 if self.use_fp16 else None
|
39 |
+
)
|
40 |
+
self.vocab_size = self.model.config.vocab_size
|
41 |
+
self.model.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def _process_token_weights(self, token_weights: np.ndarray, input_ids: list):
|
44 |
# conver to dict
|
|
|
83 |
|
84 |
@torch.no_grad()
|
85 |
def _encode(self,
|
86 |
+
texts: Dict[str, torch.Tensor] = None,
|
87 |
dimension: int = None,
|
88 |
max_length: int = 1024,
|
89 |
batch_size: int = 16,
|
|
|
92 |
|
93 |
text_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='pt', max_length=max_length)
|
94 |
text_input = {k: v.to(self.model.device) for k,v in text_input.items()}
|
95 |
+
model_out = self.model(**text_input, return_dict=True)
|
96 |
|
97 |
output = {}
|
98 |
if return_dense:
|
99 |
+
dense_vecs = model_out.last_hidden_state[:, 0, :dimension]
|
|
|
100 |
if self.normalized:
|
101 |
dense_vecs = torch.nn.functional.normalize(dense_vecs, dim=-1)
|
102 |
output['dense_embeddings'] = dense_vecs
|
103 |
if return_sparse:
|
104 |
+
token_weights = torch.relu(model_out.logits).squeeze(-1)
|
105 |
token_weights = list(map(self._process_token_weights, token_weights.detach().cpu().numpy().tolist(),
|
106 |
text_input['input_ids'].cpu().numpy().tolist()))
|
107 |
output['token_weights'] = token_weights
|
108 |
|
109 |
return output
|
110 |
|
|
|
|
|
|
|
|
|
111 |
def _compute_sparse_scores(self, embs1, embs2):
|
112 |
scores = 0
|
113 |
for token, weight in embs1.items():
|
|
|
139 |
self.compute_sparse_scores(embs1['token_weights'], embs2['token_weights']) * sparse_weight
|
140 |
scores = scores.tolist()
|
141 |
return scores
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == '__main__':
|
145 |
+
gte = GTEEmbeddidng('Alibaba-NLP/gte-multilingual-base')
|
146 |
+
docs = [
|
147 |
+
"黑龙江离俄罗斯很近",
|
148 |
+
"哈尔滨是中国黑龙江省的省会,位于中国东北",
|
149 |
+
"you are the hero"
|
150 |
+
]
|
151 |
+
print('docs', docs)
|
152 |
+
embs = gte.encode(docs, return_dense=True,return_sparse=True)
|
153 |
+
print('dense vecs', embs['dense_embeddings'])
|
154 |
+
print('sparse vecs', embs['token_weights'])
|