Edit model card

Fine-Tuning LLaMA-2-7b with QLoRA on Custom Dataset

This repository provides a setup and script for fine-tuning the LLaMA-2-7b model using QLoRA (Quantized Low-Rank Adaptation) with custom datasets. The script is designed for efficiency and flexibility in training large language models (LLMs) by leveraging advanced techniques such as 4-bit quantization and LoRA.

Overview

The script fine-tunes a pre-trained LLaMA-2-7b model using a custom dataset, applying QLoRA techniques to optimize performance. It utilizes the transformers, datasets, peft, and trl libraries for model management, data processing, and training. The setup includes support for mixed precision training, gradient checkpointing, and advanced quantization techniques to enhance the efficiency of the fine-tuning process.

Components

1. Dependencies

Ensure the following libraries are installed:

  • torch
  • datasets
  • transformers
  • peft
  • trl

Install them using pip if they are not already available:

pip install torch datasets transformers peft trl

2. Model and Dataset

  • Model: The base model used is LLaMA-2-7b. The script loads this model from a specified local directory.
  • Dataset: The training data is loaded from a specified directory. The dataset should be formatted in a way that the "text" field contains the training examples.

3. QLoRA Configuration

QLoRA parameters are used to configure the quantization and adaptation process:

  • LoRA Attention Dimension (lora_r): 64
  • LoRA Alpha Parameter (lora_alpha): 16
  • LoRA Dropout Probability (lora_dropout): 0.1

4. BitsAndBytes Configuration

Quantization settings for the model:

  • Use 4-bit Precision: True
  • Compute Data Type: float16
  • Quantization Type: nf4
  • Nested Quantization: False

5. Training Configuration

Training parameters are defined as follows:

  • Output Directory: ./results
  • Number of Epochs: 300
  • Batch Size: 4
  • Gradient Accumulation Steps: 1
  • Learning Rate: 2e-4
  • Weight Decay: 0.001
  • Optimizer: paged_adamw_32bit
  • Learning Rate Scheduler: cosine
  • Gradient Clipping: 0.3
  • Warmup Ratio: 0.03
  • Logging Steps: 25
  • Save Steps: 0

6. Training and Evaluation

The script includes preprocessing of the dataset, model initialization with QLoRA, and training using SFTTrainer from the trl library. It supports mixed precision training and gradient checkpointing to enhance training efficiency.

7. Usage Instructions

  1. Update File Paths: Adjust model_name, dataset_name, and new_model paths according to your environment.
  2. Run the Script: Execute the script in your Python environment to start the fine-tuning process.
python fine_tune_llama.py
  1. Monitor Training: Use TensorBoard or similar tools to monitor the training progress.

8. Model Saving

After training, the model is saved to the specified directory (new_model). This trained model can be loaded for further evaluation or deployment.

Example Configuration

Here’s an example configuration used for fine-tuning:

hint: the base model is: NousResearch/Llama-2-7b-chat-hf hint: the dataset is: mlabonne/guanaco-llama2-1k hint: I saved them on my local machine then laod them! you can directly download them from huggingface

model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf" # the base model is: NousResearch/Llama-2-7b-chat-hf
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k" # the dataset is: mlabonne/guanaco-llama2-1k
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

lora_r = 64
lora_alpha = 16
lora_dropout = 0.1

use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False

output_dir = "./results"
num_train_epochs = 300
fp16 = False
bf16 = False
per_device_train_batch_size = 4
gradient_accumulation_steps = 1
gradient_checkpointing = True
max_grad_norm = 0.3
learning_rate = 2e-4
weight_decay = 0.001
optim = "paged_adamw_32bit"
lr_scheduler_type = "cosine"
max_steps = -1
warmup_ratio = 0.03
group_by_length = True
save_steps = 0
logging_steps = 25

The entire Python training module:



import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer



import sys
import os

cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)


def setting_directory(depth):
    current_dir = os.path.abspath(os.getcwd())
    root_dir = current_dir
    for i in range(depth):
        root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
        sys.path.append(os.path.dirname(root_dir))
    return root_dir

#################################
#S:\Llavar_repo\LLaVA\NousResearch\Llama-2-7b-chat-hf

# The model that you want to train from the Hugging Face hub



model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"


#model_name = setting_directory(2) + "\\Llavar_repo\\LLaVA\NousResearch\\Llama-2-7b-chat-hf"



# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 300

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}



################################################################################


# Load dataset (you can process it here)
dataset = load_dataset(dataset_name, split="train")

print(dataset[0].keys())  # This will print all the field names in your dataset

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16: accelerate training with bf16=True")
        print("=" * 80)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    bias="none",
    task_type="CAUSAL_LM",
)

# Set training parameters
training_arguments = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="tensorboard"
)

# Set supervised fine-tuning parameters

def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True, max_length=512)

tokenized_dataset = dataset.map(preprocess_function, batched=True)

trainer = SFTTrainer(
    model=model,
    train_dataset=tokenized_dataset,
    peft_config=peft_config,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer.train()

# Save trained model
trainer.model.save_pretrained(new_model)

Testing the fine tuned model on the dataset


import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer


import sys
import os


base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"  # The base model you fine-tuned


cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)


def setting_directory(depth):
    current_dir = os.path.abspath(os.getcwd())
    root_dir = current_dir
    for i in range(depth):
        root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
        sys.path.append(os.path.dirname(root_dir))
    return root_dir


# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"


############################
############################  Loading the fine tunned model

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Base model path (you've trained this model using PEFT)
base_model_name = "NousResearch/Llama-2-7b-chat-hf"

# Load the base model and tokenizer
model = AutoModelForCausalLM.from_pretrained(base_model_name)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)

# Path to the directory containing adapter_config.json and adapter_model.safetensors
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

# Load the fine-tuned model (PEFT adapter)
model = PeftModel.from_pretrained(model, fine_tuned_model_path)


print(model)


####################################################
####################################################
####################################################
import os
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import json

# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Load the dataset
dataset = load_dataset(dataset_name, split="train")

# Initialize the tokenizer and load the base model
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)

# Set the model to evaluation mode
model.eval()

# Define a function to evaluate the model on a small portion of the dataset
def evaluate_model(dataset, tokenizer, model, sample_size=10, max_length=512, max_new_tokens=50):
    # Select a small portion of the dataset
    subset = dataset.select(range(min(sample_size, len(dataset))))
    
    results = []
    for example in subset:
        # Tokenize the input
        inputs = tokenizer(example['text'], return_tensors="pt", truncation=True, padding='max_length', max_length=max_length)
        
        # Ensure no gradients are calculated during inference
        with torch.no_grad():
            # Generate responses
            outputs = model.generate(
                input_ids=inputs['input_ids'],
                attention_mask=inputs['attention_mask'],
                max_length=max_length + max_new_tokens,  # Adjust max_length to allow for new tokens
                max_new_tokens=max_new_tokens  # Allow generating up to `max_new_tokens`
            )
        
        # Decode the output
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Append result
        results.append({
            'input_text': example['text'],
            'generated_text': generated_text
        })
    
    return results

# Evaluate the model on a small portion of the dataset (e.g., 10 samples)
evaluation_results = evaluate_model(dataset, tokenizer, model, sample_size=10)

# Print a few results
for result in evaluation_results:  # Print the results
    print(f"Input Text: {result['input_text']}")
    print(f"Generated Text: {result['generated_text']}")
    print("-" * 50)

# Optionally, save results to a file
with open('evaluation_results.json', 'w') as f:
    json.dump(evaluation_results, f, indent=4)

Pushing the model to Huggingface

hint: I saved everything on my local machine then I pushed it into huggingface! hint: You need "Your-Huggingface-ID" and "Your-Huggingface-Token"


import os
from transformers import AutoModelForCausalLM, AutoTokenizer, logging
from huggingface_hub import HfApi, Repository, login

from peft import LoraConfig, PeftModel


# Define paths
base_model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"
fine_tuned_model_path = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"
save_directory = "./fine_tuned_model"  # Local directory to save the model
repo_name = "Your-Huggingface-ID/llama-2-7b-miniguanaco"  # Replace with your Hugging Face username and model repo name


# Login to Hugging Face


# Step 1: Log in to Hugging Face
print("Logging in to Hugging Face...")
login(token="Your-Huggingface-Token")

# Step 2: Load the tokenizer and model
print("Loading base model and fine-tuned adapters...")
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name)
model = PeftModel.from_pretrained(base_model, fine_tuned_model_path)

# Step 3: Save the tokenizer and the fine-tuned model
print(f"Saving the fine-tuned model to {save_directory}...")
os.makedirs(save_directory, exist_ok=True)
tokenizer.save_pretrained(save_directory)
model.save_pretrained(save_directory)

# Step 4: Push the model to Hugging Face Hub
print(f"Pushing the model to the Hugging Face Hub: {repo_name}...")
model.push_to_hub(repo_name)
tokenizer.push_to_hub(repo_name)

print("Model pushed successfully!")

Log file after pushing:

Logging in to Hugging Face...
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /home/forootan/.cache/huggingface/token
Login successful
Loading base model and fine-tuned adapters...

Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:  50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 1/2 [00:29<00:29, 29.95s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:41<00:00, 19.17s/it]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:41<00:00, 20.79s/it]
/data/bio-eng-llm/miniconda3/envs/llava_main/lib/python3.10/site-packages/peft/utils/save_and_load.py:195: UserWarning: Could not find a config file in /data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf - will assume that the vocabulary was not modified.
  warnings.warn(
Saving the fine-tuned model to ./fine_tuned_model...
Pushing the model to the Hugging Face Hub: Ali-Forootani/llama-2-7b-miniguanaco...

adapter_model.safetensors:   0%|          | 0.00/134M [00:00<?, ?B/s]
adapter_model.safetensors:  12%|β–ˆβ–        | 16.0M/134M [00:01<00:12, 9.78MB/s]
adapter_model.safetensors:  24%|β–ˆβ–ˆβ–       | 32.0M/134M [00:03<00:09, 10.5MB/s]
adapter_model.safetensors:  36%|β–ˆβ–ˆβ–ˆβ–Œ      | 48.0M/134M [00:04<00:08, 10.5MB/s]
adapter_model.safetensors:  48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 64.0M/134M [00:06<00:06, 10.7MB/s]
adapter_model.safetensors:  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 80.0M/134M [00:06<00:03, 14.4MB/s]
adapter_model.safetensors:  72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 96.0M/134M [00:07<00:02, 17.3MB/s]
adapter_model.safetensors:  83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 112M/134M [00:07<00:01, 21.1MB/s] 
adapter_model.safetensors:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 128M/134M [00:07<00:00, 24.6MB/s]
adapter_model.safetensors: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 134M/134M [00:08<00:00, 16.4MB/s]

tokenizer.model:   0%|          | 0.00/500k [00:00<?, ?B/s]
tokenizer.model: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 500k/500k [00:00<00:00, 1.25MB/s]
Model pushed successfully!

This script is optimized to run on NVIDIA A100 GPUs. Specifically, the GPU resource used is: GPU: NVIDIA A100, 80GB

License

This repository is licensed under the MIT License.

Contact

For questions or issues, please contact author.


This README provides a comprehensive guide to understanding and utilizing the script for fine-tuning the LLaMA-2-7b model using advanced techniques. Adjust file paths and parameters as needed based on your specific requirements.

Citation [optional]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .