metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/Mild-demented.jpg
example_title: Mild Demented
- src: >-
https://huggingface.co/Alex14005/model-Dementia-classification-Alejandro-Arroyo/raw/main/No-demented.jpg
example_title: Healthy
model-index:
- name: model-Dementia-classification-Alejandro-Arroyo
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: RiniPL/Dementia_Dataset
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9230769230769231
model-Dementia-classification-Alejandro-Arroyo
This model is a fine-tuned version of microsoft/resnet-50 on the RiniPL/Dementia_Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1858
- Accuracy: 0.9231
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3