Edit model card

LoRA Adapters for Gemma-2-9B-IT on YouTube Titles

These are LoRA adapters for google/gemma-2-9b-it trained on AdamLucek/youtube-titles.

Intended task is to tune Gemma 2 9B to generate YouTube title's more similar to popular YouTubers, data was prepped in the instruction tuned token format.

Intended uses & limitations

See original model page google/gemma-2-9b-it intended usage for details about Gemma 2 9B usage, limitations, and ethical considerations.

Usage

The below code will show you how to load and interface with the LoRA model.

Loading the Model & LoRA Adapters

from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

# Load the Pre Trained Model
model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b-it", 
                                             quantization_config=BitsAndBytesConfig(load_in_8bit=True), 
                                             device_map="auto"
                                             ).eval()
# Load the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b-it")

# Attach LoRA Adapters to Pre Trained Model
model = PeftModel.from_pretrained(model, "AdamLucek/gemma-2-9b-it-lora-yt-titles", adapter_name="youtube_titles")

Inference

topic = "huggingface AI models"
messages = [
    {"role": "user", "content": f"Create a YouTube title about {topic}"}
]

# Apply chat template and prepare inputs
text = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}

# Generate outputs
outputs = model.generate(
    **inputs,
    max_new_tokens=256,
    do_sample=True,
    top_p=0.95,
    temperature=0.1,
    repetition_penalty=1.2,
    eos_token_id=tokenizer.eos_token_id
)
  
# Decode outputs
decoded = tokenizer.decode(outputs[0])

print(decoded)

Training procedure

Training hyperparameters

Trained on a single a6000 using the following script

python \
    examples/scripts/sft.py \
    --model_name_or_path="google/gemma-2-9b-it" \
    --dataset_name="AdamLucek/youtube-titles" \
    --dataset_text_field="gemma2_9b_it_format" \
    --per_device_train_batch_size=4 \
    --per_device_eval_batch_size=4 \
    --gradient_accumulation_steps=4 \
    --max_grad_norm=1.0 \
    --learning_rate=5e-5 \
    --weight_decay=0.01 \
    --lr_scheduler_type="cosine" \
    --warmup_ratio=0.1 \
    --report_to="wandb" \
    --bf16 \
    --max_seq_length=2048 \
    --lora_r=16 \
    --lora_alpha=32 \
    --lora_target_modules q_proj k_proj v_proj o_proj \
    --load_in_8bit \
    --use_peft \
    --attn_implementation="eager" \
    --logging_steps=1 \
    --eval_strategy="steps" \
    --eval_steps=200 \
    --save_strategy="steps" \
    --save_steps=250 \
    --output_dir="models/gemma2" \
    --hub_model_id="gemma-2-9b-it-lora-yt-titles" \
    --push_to_hub \
    --num_train_epochs=3

Training results

Visualize in Weights & Biases

Training Loss Epoch Step Validation Loss
2.2556 0.7619 200 2.0945
2.1866 1.5238 400 2.0988
2.3421 2.2857 600 2.2142

It achieves the following results on the evaluation set:

  • Loss: 2.2142

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.0.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AdamLucek/gemma-2-9b-it-lora-yt-titles

Base model

google/gemma-2-9b
Adapter
(39)
this model

Dataset used to train AdamLucek/gemma-2-9b-it-lora-yt-titles