|
--- |
|
base_model: AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct |
|
language: |
|
- sv |
|
- da |
|
- 'no' |
|
- en |
|
pipeline_tag: text-generation |
|
inference: |
|
parameters: |
|
temperature: 0.7 |
|
tags: |
|
- translation |
|
--- |
|
# Model Card for gpt-sw3-6.7b-v2-translator |
|
The `gpt-sw3-6.7b-v2-translator` is a finetuned version of `gpt-sw3-6.7b-v2-instruct` on a carefully selected translation pair dataset that was gathered by AI Sweden. |
|
|
|
|
|
## Intended usage: |
|
Translate text data from English to Swedish, or Swedish to English. |
|
|
|
|
|
## How to use: |
|
```python |
|
import torch |
|
from transformers import pipeline, StoppingCriteriaList, StoppingCriteria |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
# (Optional) - define a stopping criteria |
|
# We ideally want the model to stop generate once the response from the Bot is generated |
|
class StopOnTokenCriteria(StoppingCriteria): |
|
def __init__(self, stop_token_id): |
|
self.stop_token_id = stop_token_id |
|
|
|
def __call__(self, input_ids, scores, **kwargs): |
|
return input_ids[0, -1] == self.stop_token_id |
|
|
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model="AI-Sweden-Models/gpt-sw3-6.7b-v2-translator", |
|
device=device |
|
) |
|
|
|
stop_on_token_criteria = StopOnTokenCriteria(stop_token_id=pipe.tokenizer.bos_token_id) |
|
text = "I like to eat ice cream in the summer." |
|
|
|
# This will translate English to Swedish |
|
# To translate from Swedish to English the prompt would be: |
|
# prompt = f"<|endoftext|><s>User: Översätt till Engelska från Svenska\n{text}<s>Bot:" |
|
|
|
prompt = f"<|endoftext|><s>User: Översätt till Svenska från Engelska\n{text}<s>Bot:" |
|
|
|
input_tokens = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
max_model_length = 2048 |
|
dynamic_max_length = max_model_length - input_tokens.shape[1] |
|
|
|
response = pipe( |
|
prompt, |
|
max_length=dynamic_max_length, |
|
truncation=True, |
|
stopping_criteria=StoppingCriteriaList([stop_on_token_criteria]) |
|
) |
|
|
|
print(response[0]["generated_text"].split("<s>Bot: ")[-1]) |
|
``` |
|
```python |
|
>>> "Jag tycker om att äta glass på sommaren." |
|
``` |
|
|
|
## Training & Data: |
|
The training was done on 1 NVIDIA DGX using DeepSpeed ZeRO 3 for three epochs on roughly 4GB of carefully selected translation data. It is a full finetune of all of the model parameters. |
|
|
|
| Epoch | Training Loss | Evaluation Loss | |
|
|-------|---------------|-----------------| |
|
| 1 | 1.309 | 1.281 | |
|
| 2 | 1.161 | 1.242 | |
|
| 3 | 1.053 | 1.219 | |