--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 10.414681431340979 --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2528 - Wer: 10.4147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1957 | 3.52 | 1000 | 0.2442 | 10.5938 | | 0.1297 | 7.04 | 2000 | 0.2378 | 10.2849 | | 0.0998 | 10.56 | 3000 | 0.2428 | 10.2520 | | 0.0742 | 14.08 | 4000 | 0.2489 | 10.4015 | | 0.0738 | 17.61 | 5000 | 0.2528 | 10.4147 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1