Text Classification
Transformers
Safetensors
bert
DNA
biology
genomics
Inference Endpoints
lgq12697 commited on
Commit
3eb1617
1 Parent(s): da94f33

Add Plant DNABERT model for H3K27me3 prediction

Browse files
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ widget:
4
+ - text: AATTTTAACTAGCCCCTTCGGCCCTTCCCATCGACATATATACGAAGAGACAAAACAACATATCAACAGAATGTCAGAATTACAGACACCACGCTTGACATGTCTGTGACGCAGACCATAGAGGATGTGTCATGTTCATGTGTCCAATGGGGGCAATGGTATTGCAAGGGCACAAAATACTGCTAACATGTTTCGTAGCGCTATAGGTTACAGAGGTCATGACGTTAT
5
+ tags:
6
+ - DNA
7
+ - biology
8
+ - genomics
9
+ ---
10
+ # Plant foundation DNA large language models
11
+
12
+ The plant DNA large language models (LLMs) contain a series of foundation models based on different model architectures, which are pre-trained on various plant reference genomes.
13
+ All the models have a comparable model size between 90 MB and 150 MB, BPE tokenizer is used for tokenization and 8000 tokens are included in the vocabulary.
14
+
15
+
16
+ **Developed by:** zhangtaolab
17
+
18
+ ### Model Sources
19
+
20
+ - **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
21
+ - **Manuscript:** [Versatile applications of foundation DNA language models in plant genomes]()
22
+
23
+ ### Architecture
24
+
25
+ The model is trained based on the Google BERT base model with modified tokenizer specific for DNA sequence.
26
+
27
+ This model is fine-tuned for predicting H3K27me3 histone modification.
28
+
29
+
30
+ ### How to use
31
+
32
+ Install the runtime library first:
33
+ ```bash
34
+ pip install transformers
35
+ ```
36
+
37
+ Here is a simple code for inference:
38
+ ```python
39
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
40
+
41
+ model_name = 'plant-dnabert-H3K27me3'
42
+ # load model and tokenizer
43
+ model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
44
+ tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
45
+
46
+ # inference
47
+ sequences = ['ATCTTTTAAACCCTACTTTTCTTCACATTATTCATAATAGGCACTCTCAACTCATGGTTTAGTGGAGTTACACAATACCCAAGGTTGGGTCAAGGCCAAGACGTGATTGGTTTCTTCATTGGGCACCCTCAACTTCTGATTTTGTCCTAAGTTGAGGTAAACATGTGCAAATCTTGAATCTCCAACACCACCCGACGGAAAACTCTTCCTTTTGCCTAACGCTTTTGCTTAGCGATTGTATATGT',
48
+ 'GCATAATCGAGCTTGATGCCCATGTTTTTGCACCAGAGTTTTACCTCGTCGGCCGTAAAGTTCGTGCCGTTATCAGTGATGATGTTGTGGGGGACGCCGTAACAGTGTACAACCCCGGATATAAAGTCTATCACCGGTCCAGATTCGGCCGTCTCAACAGGCTTGGCTTCTATCCATTTGGT']
49
+ pipe = pipeline('text-classification', model=model, tokenizer=tokenizer,
50
+ trust_remote_code=True, top_k=None)
51
+ results = pipe(sequences)
52
+ print(results)
53
+
54
+ ```
55
+
56
+
57
+ ### Training data
58
+ We use BertForSequenceClassification to fine-tune the model.
59
+ Detailed training procedure can be found in our manuscript.
60
+
61
+
62
+ #### Hardware
63
+ Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "[CLS]": 8000,
3
+ "[MASK]": 8004,
4
+ "[PAD]": 8003,
5
+ "[SEP]": 8001,
6
+ "[UNK]": 8002
7
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Plant_DNABERT_H3K27me3",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "Not H3K27me3",
13
+ "1": "H3K27me3"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "Not H3K27me3": 0,
19
+ "H3K27me3": 1
20
+ },
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 8003,
27
+ "position_embedding_type": "absolute",
28
+ "problem_type": "single_label_classification",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.39.1",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 8005
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:619c3365f2959b28616dc74df300577c995dfe7ca4d3f3e4e67f6c14e348b388
3
+ size 368786344
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5177d5a7e17887278339842caa6c631a4b0074f7d3d25b3bc1857d3fa7ff29e3
3
+ size 367999
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "8000": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "8001": {
12
+ "content": "[SEP]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "8002": {
20
+ "content": "[UNK]",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "8003": {
28
+ "content": "[PAD]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "8004": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "sp_model_kwargs": {},
58
+ "split_by_punct": false,
59
+ "stride": 0,
60
+ "tokenizer_class": "DebertaV2Tokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }