zR
commited on
Commit
•
7f6bdd1
1
Parent(s):
c312c32
first
Browse files- .gitattributes +1 -0
- README.md +73 -3
- config.json +21 -0
- generation_config.json +6 -0
- pytorch_model.bin +3 -0
- tokenization_chatglm.py +249 -0
- tokenizer.model +3 -0
- tokenizer_config.json +12 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
.idea
|
README.md
CHANGED
@@ -1,3 +1,73 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## zR-Llama-1B-chatglm2-6b-tokenizer
|
2 |
+
|
3 |
+
本模型是基于 [build_MiniLLM_from_scratch 开源框架](https://github.com/Tongjilibo/build_MiniLLM_from_scratch) 自行训练的一个1B模型。
|
4 |
+
|
5 |
+
## 模型参数
|
6 |
+
+ 1B 参数量
|
7 |
+
+ 训练语料670亿。
|
8 |
+
+ 模型支持token长度 896
|
9 |
+
|
10 |
+
|
11 |
+
## 预训练模型
|
12 |
+
|
13 |
+
+ 使用 [build_MiniLLM_from_scratch 开源框架](https://github.com/Tongjilibo/build_MiniLLM_from_scratch) 的预训练数据集,自己完成 Tokenize 过程。
|
14 |
+
+ 使用 8 x 80GB A800 GPU 训练。
|
15 |
+
+ 训练 1 Epoch,bs=32 (每张卡) , lr=1.5e-4。
|
16 |
+
+ 共耗时 1 天。
|
17 |
+
|
18 |
+
## SFT模型
|
19 |
+
+ 使用 [build_MiniLLM_from_scratch 开源框架](https://github.com/Tongjilibo/build_MiniLLM_from_scratch) 提供的全部数据集
|
20 |
+
+ 使用 单卡A800 微调。
|
21 |
+
+ 微调 5 Epoch, bs=8, lr=2e-5。
|
22 |
+
+ 共耗时 3 天 12 小时。
|
23 |
+
|
24 |
+
## 使用模型
|
25 |
+
|
26 |
+
```python
|
27 |
+
import os
|
28 |
+
import torch
|
29 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
30 |
+
|
31 |
+
max_length = 896
|
32 |
+
HUMAN = '<human>'
|
33 |
+
ROBOT = '<robot>'
|
34 |
+
def build_prompt(query, history) -> str:
|
35 |
+
texts = ''
|
36 |
+
for user_input, response in history:
|
37 |
+
texts += f'{HUMAN}{user_input}{ROBOT}{response}'
|
38 |
+
|
39 |
+
texts += f'{HUMAN}{query}{ROBOT}'
|
40 |
+
return texts
|
41 |
+
|
42 |
+
def build_cli_history(history):
|
43 |
+
prompt = ''
|
44 |
+
for query, response in history:
|
45 |
+
prompt += f"\n\nUser:{query.strip()}"
|
46 |
+
prompt += f"\n\nRobot:{response.strip()}"
|
47 |
+
return prompt
|
48 |
+
|
49 |
+
|
50 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("zRzRzRzRzRzRzR/zR-Llama-1b-ChatGLM2-6b-tokenizer", trust_remote_code=True)
|
52 |
+
model = LlamaForCausalLM.from_pretrained("zRzRzRzRzRzRzR/zR-Llama-1b-ChatGLM2-6b-tokenizer").to(device)
|
53 |
+
|
54 |
+
history = []
|
55 |
+
clear_command = 'cls' if os.name == 'nt' else 'clear'
|
56 |
+
while True:
|
57 |
+
query = input('\n输入:')
|
58 |
+
if query.strip() == "stop":
|
59 |
+
break
|
60 |
+
if query.strip() == "clear":
|
61 |
+
history = []
|
62 |
+
os.system(clear_command)
|
63 |
+
continue
|
64 |
+
|
65 |
+
inputs = tokenizer.encode(build_prompt(query, history), return_tensors='pt', add_special_tokens=False).to(device)
|
66 |
+
response = model.generate(inputs)
|
67 |
+
response = tokenizer.decode(response[0].cpu(), skip_special_tokens=True)
|
68 |
+
|
69 |
+
os.system(clear_command)
|
70 |
+
print(build_cli_history(history + [(query, response)]), flush=True)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"model_type": "llama",
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_size": 2048,
|
9 |
+
"max_position_embeddings": 896,
|
10 |
+
"intermediate_size": 5632,
|
11 |
+
"num_attention_heads": 32,
|
12 |
+
"num_key_value_heads": 4,
|
13 |
+
"num_hidden_layers": 22,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"vocab_size": 64793,
|
16 |
+
"rms_norm_eps": 1e-06,
|
17 |
+
"tie_emb_prj_weight": true,
|
18 |
+
"use_cache": true,
|
19 |
+
"do_sample": true,
|
20 |
+
"max_length": 896
|
21 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0
|
6 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e238728a3661fa4c1f213ea815e159de11c6afe579938fdbe2a3042586d5ef42
|
3 |
+
size 4406772078
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List, Optional, Union, Dict
|
4 |
+
from sentencepiece import SentencePieceProcessor
|
5 |
+
from transformers import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
|
9 |
+
|
10 |
+
class SPTokenizer:
|
11 |
+
def __init__(self, model_path: str):
|
12 |
+
# reload tokenizer
|
13 |
+
assert os.path.isfile(model_path), model_path
|
14 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
15 |
+
|
16 |
+
# BOS / EOS token IDs
|
17 |
+
self.n_words: int = self.sp_model.vocab_size()
|
18 |
+
self.bos_id: int = self.sp_model.bos_id()
|
19 |
+
self.eos_id: int = self.sp_model.eos_id()
|
20 |
+
self.pad_id: int = self.sp_model.unk_id()
|
21 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
22 |
+
|
23 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"]
|
24 |
+
self.special_tokens = {}
|
25 |
+
self.index_special_tokens = {}
|
26 |
+
for token in special_tokens:
|
27 |
+
self.special_tokens[token] = self.n_words
|
28 |
+
self.index_special_tokens[self.n_words] = token
|
29 |
+
self.n_words += 1
|
30 |
+
|
31 |
+
def tokenize(self, s: str):
|
32 |
+
return self.sp_model.EncodeAsPieces(s)
|
33 |
+
|
34 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
35 |
+
assert type(s) is str
|
36 |
+
t = self.sp_model.encode(s)
|
37 |
+
if bos:
|
38 |
+
t = [self.bos_id] + t
|
39 |
+
if eos:
|
40 |
+
t = t + [self.eos_id]
|
41 |
+
return t
|
42 |
+
|
43 |
+
def decode(self, t: List[int]) -> str:
|
44 |
+
return self.sp_model.decode(t)
|
45 |
+
|
46 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
47 |
+
text = self.sp_model.DecodePieces(tokens)
|
48 |
+
return text
|
49 |
+
|
50 |
+
def convert_token_to_id(self, token):
|
51 |
+
""" Converts a token (str) in an id using the vocab. """
|
52 |
+
if token in self.special_tokens:
|
53 |
+
return self.special_tokens[token]
|
54 |
+
return self.sp_model.PieceToId(token)
|
55 |
+
|
56 |
+
def convert_id_to_token(self, index):
|
57 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
58 |
+
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
59 |
+
return ""
|
60 |
+
return self.sp_model.IdToPiece(index)
|
61 |
+
|
62 |
+
|
63 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
64 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
65 |
+
|
66 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
67 |
+
|
68 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
69 |
+
self.name = "GLMTokenizer"
|
70 |
+
|
71 |
+
self.vocab_file = vocab_file
|
72 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
73 |
+
self.special_tokens = {
|
74 |
+
"<bos>": self.tokenizer.bos_id,
|
75 |
+
"<eos>": self.tokenizer.eos_id,
|
76 |
+
"<pad>": self.tokenizer.pad_id
|
77 |
+
}
|
78 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
79 |
+
|
80 |
+
def get_command(self, token):
|
81 |
+
if token in self.special_tokens:
|
82 |
+
return self.special_tokens[token]
|
83 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
84 |
+
return self.tokenizer.special_tokens[token]
|
85 |
+
|
86 |
+
@property
|
87 |
+
def unk_token(self) -> str:
|
88 |
+
return "<unk>"
|
89 |
+
|
90 |
+
@property
|
91 |
+
def pad_token(self) -> str:
|
92 |
+
return "<unk>"
|
93 |
+
|
94 |
+
@property
|
95 |
+
def pad_token_id(self):
|
96 |
+
return self.get_command("<pad>")
|
97 |
+
|
98 |
+
@property
|
99 |
+
def eos_token(self) -> str:
|
100 |
+
return "</s>"
|
101 |
+
|
102 |
+
@property
|
103 |
+
def eos_token_id(self):
|
104 |
+
return self.get_command("<eos>")
|
105 |
+
|
106 |
+
@property
|
107 |
+
def vocab_size(self):
|
108 |
+
return self.tokenizer.n_words
|
109 |
+
|
110 |
+
def get_vocab(self):
|
111 |
+
""" Returns vocab as a dict """
|
112 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
113 |
+
vocab.update(self.added_tokens_encoder)
|
114 |
+
return vocab
|
115 |
+
|
116 |
+
def _tokenize(self, text, **kwargs):
|
117 |
+
return self.tokenizer.tokenize(text)
|
118 |
+
|
119 |
+
def _convert_token_to_id(self, token):
|
120 |
+
""" Converts a token (str) in an id using the vocab. """
|
121 |
+
return self.tokenizer.convert_token_to_id(token)
|
122 |
+
|
123 |
+
def _convert_id_to_token(self, index):
|
124 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
125 |
+
return self.tokenizer.convert_id_to_token(index)
|
126 |
+
|
127 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
128 |
+
return self.tokenizer.decode_tokens(tokens)
|
129 |
+
|
130 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
131 |
+
"""
|
132 |
+
Save the vocabulary and special tokens file to a directory.
|
133 |
+
Args:
|
134 |
+
save_directory (`str`):
|
135 |
+
The directory in which to save the vocabulary.
|
136 |
+
filename_prefix (`str`, *optional*):
|
137 |
+
An optional prefix to add to the named of the saved files.
|
138 |
+
Returns:
|
139 |
+
`Tuple(str)`: Paths to the files saved.
|
140 |
+
"""
|
141 |
+
if os.path.isdir(save_directory):
|
142 |
+
vocab_file = os.path.join(
|
143 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
vocab_file = save_directory
|
147 |
+
|
148 |
+
with open(self.vocab_file, 'rb') as fin:
|
149 |
+
proto_str = fin.read()
|
150 |
+
|
151 |
+
with open(vocab_file, "wb") as writer:
|
152 |
+
writer.write(proto_str)
|
153 |
+
|
154 |
+
return (vocab_file,)
|
155 |
+
|
156 |
+
def get_prefix_tokens(self):
|
157 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
158 |
+
return prefix_tokens
|
159 |
+
|
160 |
+
def build_prompt(self, query, history=None):
|
161 |
+
if history is None:
|
162 |
+
history = []
|
163 |
+
prompt = ""
|
164 |
+
for i, (old_query, response) in enumerate(history):
|
165 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response)
|
166 |
+
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query)
|
167 |
+
return prompt
|
168 |
+
|
169 |
+
def build_inputs_with_special_tokens(
|
170 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
171 |
+
) -> List[int]:
|
172 |
+
"""
|
173 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
174 |
+
adding special tokens. A BERT sequence has the following format:
|
175 |
+
- single sequence: `[CLS] X [SEP]`
|
176 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
177 |
+
Args:
|
178 |
+
token_ids_0 (`List[int]`):
|
179 |
+
List of IDs to which the special tokens will be added.
|
180 |
+
token_ids_1 (`List[int]`, *optional*):
|
181 |
+
Optional second list of IDs for sequence pairs.
|
182 |
+
Returns:
|
183 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
184 |
+
"""
|
185 |
+
prefix_tokens = self.get_prefix_tokens()
|
186 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
187 |
+
if token_ids_1 is not None:
|
188 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
189 |
+
return token_ids_0
|
190 |
+
|
191 |
+
def _pad(
|
192 |
+
self,
|
193 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
194 |
+
max_length: Optional[int] = None,
|
195 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
196 |
+
pad_to_multiple_of: Optional[int] = None,
|
197 |
+
return_attention_mask: Optional[bool] = None,
|
198 |
+
) -> dict:
|
199 |
+
"""
|
200 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
201 |
+
Args:
|
202 |
+
encoded_inputs:
|
203 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
204 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
205 |
+
Will truncate by taking into account the special tokens.
|
206 |
+
padding_strategy: PaddingStrategy to use for padding.
|
207 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
208 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
209 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
210 |
+
The tokenizer padding sides are defined in self.padding_side:
|
211 |
+
- 'left': pads on the left of the sequences
|
212 |
+
- 'right': pads on the right of the sequences
|
213 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
214 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
215 |
+
`>= 7.5` (Volta).
|
216 |
+
return_attention_mask:
|
217 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
218 |
+
"""
|
219 |
+
# Load from model defaults
|
220 |
+
assert self.padding_side == "left"
|
221 |
+
|
222 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
223 |
+
seq_length = len(required_input)
|
224 |
+
|
225 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
226 |
+
max_length = len(required_input)
|
227 |
+
|
228 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
229 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
230 |
+
|
231 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
232 |
+
|
233 |
+
# Initialize attention mask if not present.
|
234 |
+
if "attention_mask" not in encoded_inputs:
|
235 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
236 |
+
|
237 |
+
if "position_ids" not in encoded_inputs:
|
238 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
239 |
+
|
240 |
+
if needs_to_be_padded:
|
241 |
+
difference = max_length - len(required_input)
|
242 |
+
|
243 |
+
if "attention_mask" in encoded_inputs:
|
244 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
245 |
+
if "position_ids" in encoded_inputs:
|
246 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
247 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
248 |
+
|
249 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "THUDM/chatglm2-6b",
|
3 |
+
"remove_space": false,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
6 |
+
"auto_map": {
|
7 |
+
"AutoTokenizer": [
|
8 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
9 |
+
null
|
10 |
+
]
|
11 |
+
}
|
12 |
+
}
|