update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-base-finetuned-gtzan
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Audio Classification
|
14 |
+
type: audio-classification
|
15 |
+
dataset:
|
16 |
+
name: GTZAN
|
17 |
+
type: marsyas/gtzan
|
18 |
+
config: all
|
19 |
+
split: train
|
20 |
+
args: all
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.83
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-base-finetuned-gtzan
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.7926
|
35 |
+
- Accuracy: 0.83
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 8
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.0468 | 1.0 | 113 | 2.0109 | 0.41 |
|
68 |
+
| 1.6902 | 2.0 | 226 | 1.6493 | 0.5 |
|
69 |
+
| 1.0179 | 3.0 | 339 | 1.4098 | 0.59 |
|
70 |
+
| 1.1239 | 4.0 | 452 | 1.1319 | 0.67 |
|
71 |
+
| 0.7065 | 5.0 | 565 | 0.9650 | 0.73 |
|
72 |
+
| 0.546 | 6.0 | 678 | 0.9210 | 0.75 |
|
73 |
+
| 0.535 | 7.0 | 791 | 0.7329 | 0.81 |
|
74 |
+
| 0.3793 | 8.0 | 904 | 0.5348 | 0.86 |
|
75 |
+
| 0.6647 | 9.0 | 1017 | 0.6605 | 0.84 |
|
76 |
+
| 0.3996 | 10.0 | 1130 | 0.7797 | 0.83 |
|
77 |
+
| 0.432 | 11.0 | 1243 | 0.7763 | 0.83 |
|
78 |
+
| 0.0538 | 12.0 | 1356 | 0.7716 | 0.84 |
|
79 |
+
| 0.0858 | 13.0 | 1469 | 0.7953 | 0.82 |
|
80 |
+
| 0.3906 | 14.0 | 1582 | 0.7821 | 0.84 |
|
81 |
+
| 0.2496 | 15.0 | 1695 | 0.9718 | 0.83 |
|
82 |
+
| 0.13 | 16.0 | 1808 | 0.7773 | 0.85 |
|
83 |
+
| 0.1103 | 17.0 | 1921 | 0.6670 | 0.88 |
|
84 |
+
| 0.1443 | 18.0 | 2034 | 0.8843 | 0.84 |
|
85 |
+
| 0.0083 | 19.0 | 2147 | 0.7977 | 0.84 |
|
86 |
+
| 0.0086 | 20.0 | 2260 | 0.7926 | 0.83 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.31.0.dev0
|
92 |
+
- Pytorch 1.13.0
|
93 |
+
- Datasets 2.1.0
|
94 |
+
- Tokenizers 0.13.3
|