LN3Diff / scripts /vit_triplane_train.py
NIRVANALAN
release file
87c126b
"""
Train a diffusion model on images.
"""
import random
import json
import sys
import os
sys.path.append('.')
import torch.distributed as dist
import traceback
import torch as th
import torch.multiprocessing as mp
import numpy as np
import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch, TrainLoop3DRecNVPatchSingleForward, TrainLoop3DRecNVPatchSingleForwardMV, TrainLoop3DRecNVPatchSingleForwardMVAdvLoss
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults
from nsr.losses.builder import E3DGELossClass, E3DGE_with_AdvLoss
from pdb import set_trace as st
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16
# th.backends.cuda.matmul.allow_tf32 = True
# th.backends.cudnn.allow_tf32 = True
# th.backends.cudnn.enabled = True
enable_tf32 = th.backends.cuda.matmul.allow_tf32 # requires A100
th.backends.cuda.matmul.allow_tf32 = enable_tf32
th.backends.cudnn.allow_tf32 = enable_tf32
th.backends.cudnn.enabled = True
def training_loop(args):
# def training_loop(args):
dist_util.setup_dist(args)
# th.autograd.set_detect_anomaly(True) # type: ignore
th.autograd.set_detect_anomaly(False) # type: ignore
# https://blog.csdn.net/qq_41682740/article/details/126304613
SEED = args.seed
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
logger.log(f"{args.local_rank=} init complete, seed={SEED}")
th.cuda.set_device(args.local_rank)
th.cuda.empty_cache()
# * deterministic algorithms flags
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
random.seed(SEED)
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating encoder and NSR decoder...")
# device = dist_util.dev()
device = th.device("cuda", args.local_rank)
# shared eg3d opts
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(device)
auto_encoder.train()
logger.log("creating data loader...")
# data = load_data(
# st()
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
if args.overfitting:
data = load_memory_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
# load_depth=args.depth_lambda > 0
# load_depth=True, # for evaluation
**args_to_dict(args,
dataset_defaults().keys()))
eval_data = None
else:
if args.use_wds:
# st()
if args.data_dir == 'NONE':
with open(args.shards_lst) as f:
shards_lst = [url.strip() for url in f.readlines()]
data = load_wds_data(
shards_lst, # type: ignore
args.image_size,
args.image_size_encoder,
args.batch_size,
args.num_workers,
# plucker_embedding=args.plucker_embedding,
# mv_input=args.mv_input,
# split_chunk_input=args.split_chunk_input,
**args_to_dict(args,
dataset_defaults().keys()))
elif not args.inference:
data = load_wds_data(args.data_dir,
args.image_size,
args.image_size_encoder,
args.batch_size,
args.num_workers,
plucker_embedding=args.plucker_embedding,
mv_input=args.mv_input,
split_chunk_input=args.split_chunk_input)
else:
data = None
# ! load eval
if args.eval_data_dir == 'NONE':
with open(args.eval_shards_lst) as f:
eval_shards_lst = [url.strip() for url in f.readlines()]
else:
eval_shards_lst = args.eval_data_dir # auto expanded
eval_data = load_wds_data(
eval_shards_lst, # type: ignore
args.image_size,
args.image_size_encoder,
args.eval_batch_size,
args.num_workers,
# decode_encode_img_only=args.decode_encode_img_only,
# plucker_embedding=args.plucker_embedding,
# load_wds_diff=False,
# mv_input=args.mv_input,
# split_chunk_input=args.split_chunk_input,
**args_to_dict(args,
dataset_defaults().keys()))
# load_instance=True) # TODO
else:
if args.inference:
data = None
else:
data = load_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True,
preprocess=auto_encoder.preprocess, # clip
dataset_size=args.dataset_size,
trainer_name=args.trainer_name,
use_lmdb=args.use_lmdb,
use_wds=args.use_wds,
use_lmdb_compressed=args.use_lmdb_compressed,
plucker_embedding=args.plucker_embedding
# load_depth=True # for evaluation
)
if args.pose_warm_up_iter > 0:
overfitting_dataset = load_memory_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
# load_depth=args.depth_lambda > 0
# load_depth=True # for evaluation
**args_to_dict(args,
dataset_defaults().keys()))
data = [data, overfitting_dataset, args.pose_warm_up_iter]
eval_data = load_eval_data(
file_path=args.eval_data_dir,
batch_size=args.eval_batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True, # for evaluation
preprocess=auto_encoder.preprocess,
# interval=args.interval,
# use_lmdb=args.use_lmdb,
# plucker_embedding=args.plucker_embedding,
# load_real=args.load_real,
# four_view_for_latent=args.four_view_for_latent,
# load_extra_36_view=args.load_extra_36_view,
# shuffle_across_cls=args.shuffle_across_cls,
**args_to_dict(args,
dataset_defaults().keys()))
logger.log("creating data loader done...")
args.img_size = [args.image_size_encoder]
# try dry run
# batch = next(data)
# batch = None
# logger.log("creating model and diffusion...")
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start
if 'disc' in args.trainer_name:
loss_class = E3DGE_with_AdvLoss(
device,
opt,
# disc_weight=args.patchgan_disc, # rec_cvD_lambda
disc_factor=args.patchgan_disc_factor, # reduce D update speed
disc_weight=args.patchgan_disc_g_weight).to(device)
else:
loss_class = E3DGELossClass(device, opt).to(device)
# writer = SummaryWriter() # TODO, add log dir
logger.log("training...")
TrainLoop = {
'input_rec': TrainLoop3DRec,
'nv_rec': TrainLoop3DRecNV,
# 'nv_rec_patch': TrainLoop3DRecNVPatch,
'nv_rec_patch': TrainLoop3DRecNVPatchSingleForward,
'nv_rec_patch_mvE': TrainLoop3DRecNVPatchSingleForwardMV,
'nv_rec_patch_mvE_disc': TrainLoop3DRecNVPatchSingleForwardMVAdvLoss, # default for objaverse
}[args.trainer_name]
logger.log("creating TrainLoop done...")
# th._dynamo.config.verbose=True # th212 required
# th._dynamo.config.suppress_errors = True
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs
train_loop = TrainLoop(
rec_model=auto_encoder,
loss_class=loss_class,
data=data,
eval_data=eval_data,
# compile=args.compile,
**vars(args))
if args.inference:
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())
train_loop.eval_novelview_loop(camera=camera,
save_latent=args.save_latent)
else:
train_loop.run_loop()
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
seed=0,
dataset_size=-1,
trainer_name='input_rec',
use_amp=False,
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
# load_depth=False, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
# test warm up pose sampling training
pose_warm_up_iter=-1,
inference=False,
export_latent=False,
save_latent=False,
)
defaults.update(dataset_defaults()) # type: ignore
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
# os.environ[
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
# os.environ["NCCL_DEBUG"]="INFO"
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
# if os.environ['WORLD_SIZE'] > 1:
# args.global_rank = int(os.environ["RANK"])
args.gpus = th.cuda.device_count()
opts = args
args.rendering_kwargs = rendering_options_defaults(opts)
# print(args)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# Launch processes.
print('Launching processes...')
try:
training_loop(args)
# except KeyboardInterrupt as e:
except Exception as e:
# print(e)
traceback.print_exc()
dist_util.cleanup() # clean port and socket when ctrl+c