Transformers
Safetensors
English
Inference Endpoints
yoniebans commited on
Commit
98e5cdb
1 Parent(s): 8c0de23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -129
README.md CHANGED
@@ -1,199 +1,242 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
  - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
  - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
  - **Compute Region:** [More Information Needed]
151
  - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
-
177
- [More Information Needed]
 
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: bigcode-openrail-m
4
+ datasets:
5
+ - AlfredPros/smart-contracts-instructions
6
+ language:
7
+ - en
8
  ---
9
 
10
+ # Model Card for Starcoder2-15B Fine-Tuned with QLORA on Solidity Dataset
 
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ This model has been fine-tuned using QLORA to generate Solidity smart contracts from natural language instructions. Training was done using the same dataset used to train [https://huggingface.co/yoniebans/starcoder2-3b-qlora-solidity](starcoder2-3b-qlora-solidity). This should allow for a direct comparison between the two models. The `starcoder2-15b` base model benefits from having being trained on a lot more code that also included solidity code for reference.
 
 
17
 
18
+ - **Developed by:** @yoniebans
19
+ - **Model type:** Transformer-based Causal Language Model
20
+ - **Language(s) (NLP):** English with programming language syntax (Solidity)
 
 
21
  - **License:** [More Information Needed]
22
+ - **Finetuned from model** bigcode/starcoder2-15b
23
 
24
  ### Model Sources [optional]
25
 
 
 
26
  - **Repository:** [More Information Needed]
 
27
  - **Demo [optional]:** [More Information Needed]
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ This model was created to demonstrate how fine-tuning a base model such as starcoder2-15b using qlora can increase the model's ability to create Solidity code.
 
 
 
 
 
 
 
 
34
 
35
  ### Out-of-Scope Use
36
 
37
+ This model is not intended for:
38
 
39
+ - Deployment in production systems without rigorous testing.
40
+ - Use in non-technical text generation or any context outside smart contract development.
41
 
42
  ## Bias, Risks, and Limitations
43
 
44
+ The training data consists of code from publicly sourced Solidity projects which may not encompass the full diversity of programming styles and techniques. The Solidity source code originates from mwritescode's Slither Audited Smart Contracts (https://huggingface.co/datasets/mwritescode/slither-audited-smart-contracts).
 
 
45
 
46
  ### Recommendations
47
 
48
+ Users are advised to use this model as a starting point for development and not as a definitive solution. Generated code should always be reviewed by experienced developers to ensure security and functionality.
 
 
49
 
50
  ## How to Get Started with the Model
51
 
52
  Use the code below to get started with the model.
53
 
54
+ ```python
55
+ import sys, torch, accelerate
56
+ from peft import PeftModel
57
+ from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
58
+
59
+ use_4bit = True
60
+ bnb_4bit_compute_dtype = "float32"
61
+ bnb_4bit_quant_type = "nf4"
62
+ use_double_nested_quant = True
63
+ compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
64
+
65
+ device_map = "auto"
66
+ max_memory = '75000MB'
67
+ n_gpus = torch.cuda.device_count()
68
+ max_memory = {i: max_memory for i in range(n_gpus)}
69
+
70
+ checkpoint = "bigcode/starcoder2-15b"
71
+ model = AutoModelForCausalLM.from_pretrained(
72
+ checkpoint,
73
+ cache_dir=None,
74
+ device_map=device_map,
75
+ max_memory=max_memory,
76
+ quantization_config=BitsAndBytesConfig(
77
+ load_in_4bit=use_4bit,
78
+ llm_int8_threshold=6.0,
79
+ llm_int8_has_fp16_weight=False,
80
+ bnb_4bit_compute_dtype=compute_dtype,
81
+ bnb_4bit_use_double_quant=use_double_nested_quant,
82
+ bnb_4bit_quant_type=bnb_4bit_quant_type
83
+ ),
84
+ torch_dtype=torch.float32,
85
+ trust_remote_code=False
86
+ )
87
+
88
+ tokenizer = AutoTokenizer.from_pretrained(
89
+ checkpoint,
90
+ cache_dir=None,
91
+ padding_side="right",
92
+ use_fast=False,
93
+ tokenizer_type=None, # Needed for HF name change
94
+ trust_remote_code=False,
95
+ use_auth_token=False,
96
+ )
97
+
98
+ if tokenizer._pad_token is None:
99
+ num_new_tokens = tokenizer.add_special_tokens(dict(pad_token="[PAD]"))
100
+ model.resize_token_embeddings(len(tokenizer))
101
+
102
+ if num_new_tokens > 0:
103
+ input_embeddings_data = model.get_input_embeddings().weight.data
104
+ output_embeddings_data = model.get_output_embeddings().weight.data
105
+
106
+ input_embeddings_avg = input_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
107
+ output_embeddings_avg = output_embeddings_data[:-num_new_tokens].mean(dim=0, keepdim=True)
108
+
109
+ input_embeddings_data[-num_new_tokens:] = input_embeddings_avg
110
+ output_embeddings_data[-num_new_tokens:] = output_embeddings_avg
111
+
112
+ local_adapter_weights = "yoniebans/starcoder2-15b-qlora-solidity"
113
+ model = PeftModel.from_pretrained(model, local_adapter_weights)
114
+
115
+ input='Make a smart contract for a memecoin named 'LLMAI', adhering to the ERC20 standard. The contract should enforce a purchase limit where no individual wallet can acquire more than 1% of the total token supply, which is set at 10 billion tokens. This purchasing limit should be modifiable and can only be disabled by the contract owner at their discretion. Note that the interfaces for ERC20, Ownable, and any other dependencies should be assumed as already imported and do not need to be included in your code response.'
116
+
117
+ prompt = f"""### Instruction:
118
+ Use the Task below and the Input given to write the Response, which is a programming code that can solve the following Task:
119
+
120
+ ### Task:
121
+ {input}
122
+
123
+ ### Solution:
124
+ """
125
+
126
+ input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
127
+ outputs = model.generate(
128
+ input_ids=input_ids,
129
+ max_new_tokens=2048,
130
+ do_sample=True,
131
+ top_p=0.9,
132
+ temperature=0.001,
133
+ pad_token_id=1
134
+ )
135
+
136
+ output_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
137
+ output_text_without_prompt = output_text[len(prompt):]
138
+
139
+ file_path = './smart_contract.sol'
140
+
141
+ with open(file_path, 'w') as file:
142
+ file.write(output_text_without_prompt)
143
+
144
+ print(f"Output written to {file_path}")
145
+ ```
146
 
147
  ## Training Details
148
 
149
  ### Training Data
150
 
151
+ The model was trained on a dataset consisting of pairs of natural language instructions and their corresponding Solidity code implementations. This dataset includes over 6000 input and outputs.
 
 
152
 
153
  ### Training Procedure
154
 
 
 
 
 
 
 
 
155
  #### Training Hyperparameters
156
 
157
+ - Number of train epochs: 6
158
+ - Double quant: true
159
+ - Quant type: nf4
160
+ - Bits: 4
161
+ - Lora r: 64
162
+ - Lora aplha: 16
163
+ - Lora dropout: 0.0
164
+ - Per device train batch size: 1
165
+ - Gradient accumulation steps: 1
166
+ - Max steps: 2000
167
+ - Weight decay: 0.0 #use lora dropout instead for regularization if needed
168
+ - Learning rate: 2e-4
169
+ - Max gradient normal: 0.3
170
+ - Gradient checkpointing: true
171
+ - FP16: false
172
+ - FP16 option level: O1
173
+ - BF16: false
174
+ - Optimizer: paged AdamW 32-bit
175
+ - Learning rate scheduler type: constant
176
+ - Warmup ratio: 0.03
177
 
178
  #### Speeds, Sizes, Times [optional]
179
 
180
+ | Epoch | Grad Norm | Loss | Step |
181
+ |-------|-----------|------|------|
182
+ | 0.03 | 0.299587 | 0.9556 | 10 |
183
+ | 0.30 | 0.496698 | 0.6772 | 100 |
184
+ | 0.59 | 0.249761 | 0.5784 | 200 |
185
+ | 0.89 | 0.233806 | 0.6166 | 300 |
186
+ | 1.18 | 0.141580 | 0.3541 | 400 |
187
+ | 1.48 | 0.129458 | 0.3517 | 500 |
188
+ | 1.78 | 0.114603 | 0.3793 | 600 |
189
+ | 2.07 | 0.085970 | 0.3937 | 700 |
190
+ | 2.37 | 0.085016 | 0.3209 | 800 |
191
+ | 2.67 | 0.097650 | 0.3716 | 900 |
192
+ | 2.96 | 0.093905 | 0.3437 | 1000 |
193
+ | 3.26 | 0.137684 | 0.3026 | 1100 |
194
+ | 3.55 | 0.137903 | 0.3432 | 1200 |
195
+ | 3.85 | 0.103362 | 0.3310 | 1300 |
196
+ | 4.15 | 0.174095 | 0.3567 | 1400 |
197
+ | 4.44 | 0.203337 | 0.3279 | 1500 |
198
+ | 4.74 | 0.229325 | 0.4026 | 1600 |
199
+ | 5.04 | 0.134137 | 0.1737 | 1700 |
200
+ | 5.33 | 0.113009 | 0.2132 | 1800 |
201
+ | 5.63 | 0.066551 | 0.2207 | 1900 |
202
+ | 5.92 | 0.136091 | 0.2193 | 2000 |
203
+
204
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65e20784f70c00af9691d07b/OxGiUiSUMZEsdLWuYU2jl.png)
 
 
205
 
206
  ### Results
207
 
 
 
208
  #### Summary
209
 
210
+ Initial evaluations show promising results in generating Solidity code. More work required to understand effectiveness of input promt and max_length for training and inference.
 
 
 
 
 
 
211
 
212
  ## Environmental Impact
213
 
214
+ - **Hardware Type:** NVIDIA A100 80GB (80 GB VRAM) 117 GB RAM 8 vCPU
215
+ - **Hours used:** 8
216
+ - **Cloud Provider:** https://www.runpod.io
 
 
 
 
217
  - **Compute Region:** [More Information Needed]
218
  - **Carbon Emitted:** [More Information Needed]
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
  ## Citation [optional]
221
 
 
 
222
  **BibTeX:**
223
+ ```
224
+ @misc{lozhkov2024starcoder,
225
+ title={StarCoder 2 and The Stack v2: The Next Generation},
226
+ author={Anton Lozhkov and Raymond Li and Loubna Ben Allal and Federico Cassano and Joel Lamy-Poirier and Nouamane Tazi and Ao Tang and Dmytro Pykhtar and Jiawei Liu and Yuxiang Wei and Tianyang Liu and Max Tian and Denis Kocetkov and Arthur Zucker and Younes Belkada and Zijian Wang and Qian Liu and Dmitry Abulkhanov and Indraneil Paul and Zhuang Li and Wen-Ding Li and Megan Risdal and Jia Li and Jian Zhu and Terry Yue Zhuo and Evgenii Zheltonozhskii and Nii Osae Osae Dade and Wenhao Yu and Lucas Krauß and Naman Jain and Yixuan Su and Xuanli He and Manan Dey and Edoardo Abati and Yekun Chai and Niklas Muennighoff and Xiangru Tang and Muhtasham Oblokulov and Christopher Akiki and Marc Marone and Chenghao Mou and Mayank Mishra and Alex Gu and Binyuan Hui and Tri Dao and Armel Zebaze and Olivier Dehaene and Nicolas Patry and Canwen Xu and Julian McAuley and Han Hu and Torsten Scholak and Sebastien Paquet and Jennifer Robinson and Carolyn Jane Anderson and Nicolas Chapados and Mostofa Patwary and Nima Tajbakhsh and Yacine Jernite and Carlos Muñoz Ferrandis and Lingming Zhang and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
227
+ year={2024},
228
+ eprint={2402.19173},
229
+ archivePrefix={arXiv},
230
+ primaryClass={cs.SE}
231
+ }
232
+ ```
233
 
234
  **APA:**
235
 
236
+ Starcoder2-15B: BigCode Team. (2024). Starcoder2-15B [Software]. Available from https://huggingface.co/bigcode/starcoder2-15b
 
 
 
 
 
 
 
 
 
 
 
 
237
 
238
+ AlfredPros Smart Contracts Instructions: AlfredPros. (2023). Smart Contracts Instructions [Data set]. Available from https://huggingface.co/datasets/AlfredPros/smart-contracts-instructions
239
 
240
  ## Model Card Contact
241
 
242