File size: 2,135 Bytes
6fd7a87 fa22daa 6fd7a87 fa22daa 6fd7a87 fa22daa 6fd7a87 fa22daa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: cc-by-4.0
base_model: Helsinki-NLP/opus-mt-tc-big-en-ar
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: english-to-darija-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# english-to-darija-2
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-en-ar) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8514
- Bleu: 70.9947
- Gen Len: 9.092
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.6032 | 1.0 | 4651 | 1.4540 | 25.9364 | 8.9697 |
| 1.1191 | 2.0 | 9302 | 1.0805 | 48.0549 | 9.0661 |
| 0.8048 | 3.0 | 13953 | 0.9419 | 61.3646 | 9.1018 |
| 0.5978 | 4.0 | 18604 | 0.8939 | 65.6846 | 9.1161 |
| 0.477 | 5.0 | 23255 | 0.8623 | 68.0005 | 9.1049 |
| 0.4228 | 6.0 | 27906 | 0.8540 | 69.1959 | 9.1276 |
| 0.3534 | 7.0 | 32557 | 0.8479 | 69.944 | 9.0744 |
| 0.305 | 8.0 | 37208 | 0.8473 | 70.55 | 9.0987 |
| 0.2678 | 9.0 | 41859 | 0.8489 | 70.8065 | 9.1166 |
| 0.243 | 10.0 | 46510 | 0.8514 | 70.9947 | 9.092 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
|