Delete modeling_omnigenome.py
Browse files- modeling_omnigenome.py +0 -1761
modeling_omnigenome.py
DELETED
@@ -1,1761 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 ColaLab-UoE (https://colalab.ai/), Meta and The HuggingFace Inc. team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" PyTorch OmniGenome model."""
|
16 |
-
|
17 |
-
import math
|
18 |
-
import random
|
19 |
-
import warnings
|
20 |
-
from typing import List, Optional, Tuple, Union
|
21 |
-
|
22 |
-
import numpy as np
|
23 |
-
import torch
|
24 |
-
import torch.utils.checkpoint
|
25 |
-
from torch import nn
|
26 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
27 |
-
from transformers import add_start_docstrings, PreTrainedModel
|
28 |
-
|
29 |
-
from transformers.modeling_outputs import (
|
30 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
31 |
-
BaseModelOutputWithPoolingAndCrossAttentions,
|
32 |
-
MaskedLMOutput,
|
33 |
-
SequenceClassifierOutput,
|
34 |
-
TokenClassifierOutput,
|
35 |
-
)
|
36 |
-
|
37 |
-
from transformers.pytorch_utils import (
|
38 |
-
find_pruneable_heads_and_indices,
|
39 |
-
prune_linear_layer,
|
40 |
-
)
|
41 |
-
|
42 |
-
from transformers.utils import (
|
43 |
-
logging,
|
44 |
-
add_code_sample_docstrings,
|
45 |
-
add_start_docstrings_to_model_forward,
|
46 |
-
)
|
47 |
-
|
48 |
-
from .configuration_omnigenome import OmniGenomeConfig
|
49 |
-
|
50 |
-
logger = logging.get_logger(__name__)
|
51 |
-
|
52 |
-
_CHECKPOINT_FOR_DOC = "yangheng/OmniGenome-52M"
|
53 |
-
_CONFIG_FOR_DOC = "OmniGenomeConfig"
|
54 |
-
|
55 |
-
OmniGenome_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
56 |
-
"yangheng/OmniGenome-52M",
|
57 |
-
# This is not a complete list of all OmniGenome models!
|
58 |
-
# See all OmniGenome models at https://huggingface.co/models?filter=OmniGenome
|
59 |
-
]
|
60 |
-
|
61 |
-
|
62 |
-
def rotate_half(x):
|
63 |
-
x1, x2 = x.chunk(2, dim=-1)
|
64 |
-
return torch.cat((-x2, x1), dim=-1)
|
65 |
-
|
66 |
-
|
67 |
-
def apply_rotary_pos_emb(x, cos, sin):
|
68 |
-
cos = cos[:, :, : x.shape[-2], :]
|
69 |
-
sin = sin[:, :, : x.shape[-2], :]
|
70 |
-
|
71 |
-
return (x * cos) + (rotate_half(x) * sin)
|
72 |
-
|
73 |
-
|
74 |
-
def gelu(x):
|
75 |
-
"""
|
76 |
-
This is the gelu implementation from the original OmniGenome repo. Using F.gelu yields subtly wrong results.
|
77 |
-
"""
|
78 |
-
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
79 |
-
|
80 |
-
|
81 |
-
def symmetrize(x):
|
82 |
-
"Make layer symmetric in final two dimensions, used for contact prediction."
|
83 |
-
return x + x.transpose(-1, -2)
|
84 |
-
|
85 |
-
|
86 |
-
def average_product_correct(x):
|
87 |
-
"Perform average product correct, used for contact prediction."
|
88 |
-
a1 = x.sum(-1, keepdims=True)
|
89 |
-
a2 = x.sum(-2, keepdims=True)
|
90 |
-
a12 = x.sum((-1, -2), keepdims=True)
|
91 |
-
|
92 |
-
avg = a1 * a2
|
93 |
-
avg.div_(a12) # in-place to reduce memory
|
94 |
-
normalized = x - avg
|
95 |
-
return normalized
|
96 |
-
|
97 |
-
|
98 |
-
# Copied from transformers.models.esm.modeling_esm.RotaryEmbedding
|
99 |
-
class RotaryEmbedding(torch.nn.Module):
|
100 |
-
"""
|
101 |
-
Rotary position embeddings based on those in
|
102 |
-
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
|
103 |
-
matrices which depend on their relative positions.
|
104 |
-
"""
|
105 |
-
|
106 |
-
def __init__(self, dim: int):
|
107 |
-
super().__init__()
|
108 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
109 |
-
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
110 |
-
inv_freq = inv_freq
|
111 |
-
self.register_buffer("inv_freq", inv_freq)
|
112 |
-
|
113 |
-
self._seq_len_cached = None
|
114 |
-
self._cos_cached = None
|
115 |
-
self._sin_cached = None
|
116 |
-
|
117 |
-
def _update_cos_sin_tables(self, x, seq_dimension=2):
|
118 |
-
seq_len = x.shape[seq_dimension]
|
119 |
-
|
120 |
-
# Reset the tables if the sequence length has changed,
|
121 |
-
# or if we're on a new device (possibly due to tracing for instance)
|
122 |
-
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
|
123 |
-
self._seq_len_cached = seq_len
|
124 |
-
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(
|
125 |
-
self.inv_freq
|
126 |
-
)
|
127 |
-
freqs = torch.outer(t, self.inv_freq)
|
128 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
129 |
-
|
130 |
-
self._cos_cached = emb.cos()[None, None, :, :]
|
131 |
-
self._sin_cached = emb.sin()[None, None, :, :]
|
132 |
-
|
133 |
-
return self._cos_cached, self._sin_cached
|
134 |
-
|
135 |
-
def forward(
|
136 |
-
self, q: torch.Tensor, k: torch.Tensor
|
137 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
138 |
-
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
139 |
-
k, seq_dimension=-2
|
140 |
-
)
|
141 |
-
|
142 |
-
return (
|
143 |
-
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
|
144 |
-
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
|
145 |
-
)
|
146 |
-
|
147 |
-
|
148 |
-
# Copied from transformers.models.esm.modeling_esm.EsmContactPredictionHead with Esm->OmniGenome
|
149 |
-
class OmniGenomeContactPredictionHead(nn.Module):
|
150 |
-
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
|
151 |
-
|
152 |
-
def __init__(
|
153 |
-
self,
|
154 |
-
in_features: int,
|
155 |
-
bias=True,
|
156 |
-
eos_idx: int = 2,
|
157 |
-
):
|
158 |
-
super().__init__()
|
159 |
-
self.in_features = in_features
|
160 |
-
self.eos_idx = eos_idx
|
161 |
-
self.regression = nn.Linear(in_features, 1, bias)
|
162 |
-
self.activation = nn.Sigmoid()
|
163 |
-
|
164 |
-
def forward(self, tokens, attentions):
|
165 |
-
# remove eos token attentions
|
166 |
-
eos_mask = tokens.ne(self.eos_idx).to(attentions)
|
167 |
-
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
|
168 |
-
attentions = attentions * eos_mask[:, None, None, :, :]
|
169 |
-
attentions = attentions[..., :-1, :-1]
|
170 |
-
# remove cls token attentions
|
171 |
-
attentions = attentions[..., 1:, 1:]
|
172 |
-
batch_size, layers, heads, seqlen, _ = attentions.size()
|
173 |
-
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
|
174 |
-
|
175 |
-
# features: batch x channels x tokens x tokens (symmetric)
|
176 |
-
attentions = attentions.to(
|
177 |
-
self.regression.weight.device
|
178 |
-
) # attentions always float32, may need to convert to float16
|
179 |
-
attentions = average_product_correct(symmetrize(attentions))
|
180 |
-
attentions = attentions.permute(0, 2, 3, 1)
|
181 |
-
return self.activation(self.regression(attentions).squeeze(3))
|
182 |
-
|
183 |
-
|
184 |
-
# Copied from transformers.models.esm.modeling_esm.EsmEmbeddings with Esm->OmniGenome
|
185 |
-
class OmniGenomeEmbeddings(nn.Module):
|
186 |
-
"""
|
187 |
-
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
188 |
-
"""
|
189 |
-
|
190 |
-
def __init__(self, config):
|
191 |
-
super().__init__()
|
192 |
-
self.word_embeddings = nn.Embedding(
|
193 |
-
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
194 |
-
)
|
195 |
-
|
196 |
-
if config.emb_layer_norm_before:
|
197 |
-
self.layer_norm = nn.LayerNorm(
|
198 |
-
config.hidden_size, eps=config.layer_norm_eps
|
199 |
-
)
|
200 |
-
else:
|
201 |
-
self.layer_norm = None
|
202 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
203 |
-
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
204 |
-
self.position_embedding_type = getattr(
|
205 |
-
config, "position_embedding_type", "absolute"
|
206 |
-
)
|
207 |
-
self.register_buffer(
|
208 |
-
"position_ids",
|
209 |
-
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
210 |
-
persistent=False,
|
211 |
-
)
|
212 |
-
|
213 |
-
self.padding_idx = config.pad_token_id
|
214 |
-
self.position_embeddings = nn.Embedding(
|
215 |
-
config.max_position_embeddings,
|
216 |
-
config.hidden_size,
|
217 |
-
padding_idx=self.padding_idx,
|
218 |
-
)
|
219 |
-
self.token_dropout = config.token_dropout
|
220 |
-
self.mask_token_id = config.mask_token_id
|
221 |
-
|
222 |
-
def forward(
|
223 |
-
self,
|
224 |
-
input_ids=None,
|
225 |
-
attention_mask=None,
|
226 |
-
position_ids=None,
|
227 |
-
inputs_embeds=None,
|
228 |
-
past_key_values_length=0,
|
229 |
-
):
|
230 |
-
if position_ids is None:
|
231 |
-
if input_ids is not None:
|
232 |
-
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
233 |
-
position_ids = create_position_ids_from_input_ids(
|
234 |
-
input_ids, self.padding_idx, past_key_values_length
|
235 |
-
)
|
236 |
-
else:
|
237 |
-
position_ids = self.create_position_ids_from_inputs_embeds(
|
238 |
-
inputs_embeds
|
239 |
-
)
|
240 |
-
|
241 |
-
if inputs_embeds is None:
|
242 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
243 |
-
|
244 |
-
# Note that if we want to support OmniGenome-1 (not 1b!) in future then we need to support an
|
245 |
-
# embedding_scale factor here.
|
246 |
-
embeddings = inputs_embeds
|
247 |
-
|
248 |
-
# Matt: OmniGenome has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
|
249 |
-
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
|
250 |
-
# masked tokens are treated as if they were selected for input dropout and zeroed out.
|
251 |
-
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
|
252 |
-
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
|
253 |
-
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
|
254 |
-
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
|
255 |
-
if self.token_dropout:
|
256 |
-
embeddings = embeddings.masked_fill(
|
257 |
-
(input_ids == self.mask_token_id).unsqueeze(-1), 0.0
|
258 |
-
)
|
259 |
-
mask_ratio_train = (
|
260 |
-
0.15 * 0.8
|
261 |
-
) # Hardcoded as the ratio used in all OmniGenome model training runs
|
262 |
-
src_lengths = attention_mask.sum(-1)
|
263 |
-
mask_ratio_observed = (input_ids == self.mask_token_id).sum(
|
264 |
-
-1
|
265 |
-
).float() / src_lengths
|
266 |
-
embeddings = (
|
267 |
-
embeddings
|
268 |
-
* (1 - mask_ratio_train)
|
269 |
-
/ (1 - mask_ratio_observed)[:, None, None]
|
270 |
-
).to(embeddings.dtype)
|
271 |
-
|
272 |
-
if self.position_embedding_type == "absolute":
|
273 |
-
position_embeddings = self.position_embeddings(position_ids)
|
274 |
-
embeddings = embeddings + position_embeddings
|
275 |
-
|
276 |
-
if self.layer_norm is not None:
|
277 |
-
embeddings = self.layer_norm(embeddings)
|
278 |
-
if attention_mask is not None:
|
279 |
-
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(
|
280 |
-
embeddings.dtype
|
281 |
-
)
|
282 |
-
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
|
283 |
-
# embeddings = self.dropout(embeddings)
|
284 |
-
return embeddings
|
285 |
-
|
286 |
-
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
287 |
-
"""
|
288 |
-
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
289 |
-
|
290 |
-
Args:
|
291 |
-
inputs_embeds: torch.Tensor
|
292 |
-
|
293 |
-
Returns: torch.Tensor
|
294 |
-
"""
|
295 |
-
input_shape = inputs_embeds.size()[:-1]
|
296 |
-
sequence_length = input_shape[1]
|
297 |
-
|
298 |
-
position_ids = torch.arange(
|
299 |
-
self.padding_idx + 1,
|
300 |
-
sequence_length + self.padding_idx + 1,
|
301 |
-
dtype=torch.long,
|
302 |
-
device=inputs_embeds.device,
|
303 |
-
)
|
304 |
-
return position_ids.unsqueeze(0).expand(input_shape)
|
305 |
-
|
306 |
-
|
307 |
-
# Copied from transformers.models.esm.modeling_esm.EsmSelfAttention with Esm->OmniGenome
|
308 |
-
class OmniGenomeSelfAttention(nn.Module):
|
309 |
-
def __init__(self, config, position_embedding_type=None):
|
310 |
-
super().__init__()
|
311 |
-
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
312 |
-
config, "embedding_size"
|
313 |
-
):
|
314 |
-
raise ValueError(
|
315 |
-
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
316 |
-
f"heads ({config.num_attention_heads})"
|
317 |
-
)
|
318 |
-
|
319 |
-
self.num_attention_heads = config.num_attention_heads
|
320 |
-
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
321 |
-
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
322 |
-
|
323 |
-
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
324 |
-
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
325 |
-
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
326 |
-
|
327 |
-
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
328 |
-
self.position_embedding_type = position_embedding_type or getattr(
|
329 |
-
config, "position_embedding_type", "absolute"
|
330 |
-
)
|
331 |
-
self.rotary_embeddings = None
|
332 |
-
if (
|
333 |
-
self.position_embedding_type == "relative_key"
|
334 |
-
or self.position_embedding_type == "relative_key_query"
|
335 |
-
):
|
336 |
-
self.max_position_embeddings = config.max_position_embeddings
|
337 |
-
self.distance_embedding = nn.Embedding(
|
338 |
-
2 * config.max_position_embeddings - 1, self.attention_head_size
|
339 |
-
)
|
340 |
-
elif self.position_embedding_type == "rotary":
|
341 |
-
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
|
342 |
-
|
343 |
-
self.is_decoder = config.is_decoder
|
344 |
-
|
345 |
-
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
346 |
-
new_x_shape = x.size()[:-1] + (
|
347 |
-
self.num_attention_heads,
|
348 |
-
self.attention_head_size,
|
349 |
-
)
|
350 |
-
x = x.view(new_x_shape)
|
351 |
-
return x.permute(0, 2, 1, 3)
|
352 |
-
|
353 |
-
def forward(
|
354 |
-
self,
|
355 |
-
hidden_states: torch.Tensor,
|
356 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
357 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
358 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
359 |
-
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
360 |
-
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
361 |
-
output_attentions: Optional[bool] = False,
|
362 |
-
) -> Tuple[torch.Tensor]:
|
363 |
-
mixed_query_layer = self.query(hidden_states)
|
364 |
-
|
365 |
-
# If this is instantiated as a cross-attention module, the keys
|
366 |
-
# and values come from an encoder; the attention mask needs to be
|
367 |
-
# such that the encoder's padding tokens are not attended to.
|
368 |
-
is_cross_attention = encoder_hidden_states is not None
|
369 |
-
|
370 |
-
if is_cross_attention and past_key_value is not None:
|
371 |
-
# reuse k,v, cross_attentions
|
372 |
-
key_layer = past_key_value[0]
|
373 |
-
value_layer = past_key_value[1]
|
374 |
-
attention_mask = encoder_attention_mask
|
375 |
-
elif is_cross_attention:
|
376 |
-
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
377 |
-
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
378 |
-
attention_mask = encoder_attention_mask
|
379 |
-
elif past_key_value is not None:
|
380 |
-
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
381 |
-
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
382 |
-
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
383 |
-
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
384 |
-
else:
|
385 |
-
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
386 |
-
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
387 |
-
|
388 |
-
query_layer = self.transpose_for_scores(mixed_query_layer)
|
389 |
-
|
390 |
-
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
|
391 |
-
# OmniGenome scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
|
392 |
-
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
|
393 |
-
# OmniGenome code and fix rotary embeddings.
|
394 |
-
query_layer = query_layer * self.attention_head_size ** -0.5
|
395 |
-
|
396 |
-
if self.is_decoder:
|
397 |
-
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
398 |
-
# Further calls to cross_attention layer can then reuse all cross-attention
|
399 |
-
# key/value_states (first "if" case)
|
400 |
-
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
401 |
-
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
402 |
-
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
403 |
-
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
404 |
-
past_key_value = (key_layer, value_layer)
|
405 |
-
|
406 |
-
if self.position_embedding_type == "rotary":
|
407 |
-
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
|
408 |
-
|
409 |
-
# Take the dot product between "query" and "key" to get the raw attention scores.
|
410 |
-
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
411 |
-
|
412 |
-
if (
|
413 |
-
self.position_embedding_type == "relative_key"
|
414 |
-
or self.position_embedding_type == "relative_key_query"
|
415 |
-
):
|
416 |
-
seq_length = hidden_states.size()[1]
|
417 |
-
position_ids_l = torch.arange(
|
418 |
-
seq_length, dtype=torch.long, device=hidden_states.device
|
419 |
-
).view(-1, 1)
|
420 |
-
position_ids_r = torch.arange(
|
421 |
-
seq_length, dtype=torch.long, device=hidden_states.device
|
422 |
-
).view(1, -1)
|
423 |
-
distance = position_ids_l - position_ids_r
|
424 |
-
positional_embedding = self.distance_embedding(
|
425 |
-
distance + self.max_position_embeddings - 1
|
426 |
-
)
|
427 |
-
positional_embedding = positional_embedding.to(
|
428 |
-
dtype=query_layer.dtype
|
429 |
-
) # fp16 compatibility
|
430 |
-
|
431 |
-
if self.position_embedding_type == "relative_key":
|
432 |
-
relative_position_scores = torch.einsum(
|
433 |
-
"bhld,lrd->bhlr", query_layer, positional_embedding
|
434 |
-
)
|
435 |
-
attention_scores = attention_scores + relative_position_scores
|
436 |
-
elif self.position_embedding_type == "relative_key_query":
|
437 |
-
relative_position_scores_query = torch.einsum(
|
438 |
-
"bhld,lrd->bhlr", query_layer, positional_embedding
|
439 |
-
)
|
440 |
-
relative_position_scores_key = torch.einsum(
|
441 |
-
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
442 |
-
)
|
443 |
-
attention_scores = (
|
444 |
-
attention_scores
|
445 |
-
+ relative_position_scores_query
|
446 |
-
+ relative_position_scores_key
|
447 |
-
)
|
448 |
-
|
449 |
-
if attention_mask is not None:
|
450 |
-
# Apply the attention mask is (precomputed for all layers in OmniGenomeModel forward() function)
|
451 |
-
attention_scores = attention_scores + attention_mask
|
452 |
-
|
453 |
-
# Normalize the attention scores to probabilities.
|
454 |
-
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
455 |
-
|
456 |
-
# This is actually dropping out entire tokens to attend to, which might
|
457 |
-
# seem a bit unusual, but is taken from the original Transformer paper.
|
458 |
-
attention_probs = self.dropout(attention_probs)
|
459 |
-
|
460 |
-
# Mask heads if we want to
|
461 |
-
if head_mask is not None:
|
462 |
-
attention_probs = attention_probs * head_mask
|
463 |
-
|
464 |
-
context_layer = torch.matmul(attention_probs, value_layer)
|
465 |
-
|
466 |
-
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
467 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
468 |
-
context_layer = context_layer.view(new_context_layer_shape)
|
469 |
-
|
470 |
-
outputs = (
|
471 |
-
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
472 |
-
)
|
473 |
-
|
474 |
-
if self.is_decoder:
|
475 |
-
outputs = outputs + (past_key_value,)
|
476 |
-
return outputs
|
477 |
-
|
478 |
-
|
479 |
-
# Copied from transformers.models.esm.modeling_esm.EsmSelfOutput with Esm->OmniGenome
|
480 |
-
class OmniGenomeSelfOutput(nn.Module):
|
481 |
-
def __init__(self, config):
|
482 |
-
super().__init__()
|
483 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
484 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
485 |
-
|
486 |
-
def forward(self, hidden_states, input_tensor):
|
487 |
-
hidden_states = self.dense(hidden_states)
|
488 |
-
hidden_states = self.dropout(hidden_states)
|
489 |
-
hidden_states = hidden_states + input_tensor
|
490 |
-
return hidden_states
|
491 |
-
|
492 |
-
|
493 |
-
# Copied from transformers.models.esm.modeling_esm.EsmAttention with Esm->OmniGenome
|
494 |
-
class OmniGenomeAttention(nn.Module):
|
495 |
-
def __init__(self, config):
|
496 |
-
super().__init__()
|
497 |
-
self.self = OmniGenomeSelfAttention(config)
|
498 |
-
self.output = OmniGenomeSelfOutput(config)
|
499 |
-
self.pruned_heads = set()
|
500 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
501 |
-
|
502 |
-
def prune_heads(self, heads):
|
503 |
-
if len(heads) == 0:
|
504 |
-
return
|
505 |
-
heads, index = find_pruneable_heads_and_indices(
|
506 |
-
heads,
|
507 |
-
self.self.num_attention_heads,
|
508 |
-
self.self.attention_head_size,
|
509 |
-
self.pruned_heads,
|
510 |
-
)
|
511 |
-
|
512 |
-
# Prune linear layers
|
513 |
-
self.self.query = prune_linear_layer(self.self.query, index)
|
514 |
-
self.self.key = prune_linear_layer(self.self.key, index)
|
515 |
-
self.self.value = prune_linear_layer(self.self.value, index)
|
516 |
-
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
517 |
-
|
518 |
-
# Update hyper params and store pruned heads
|
519 |
-
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
520 |
-
self.self.all_head_size = (
|
521 |
-
self.self.attention_head_size * self.self.num_attention_heads
|
522 |
-
)
|
523 |
-
self.pruned_heads = self.pruned_heads.union(heads)
|
524 |
-
|
525 |
-
def forward(
|
526 |
-
self,
|
527 |
-
hidden_states,
|
528 |
-
attention_mask=None,
|
529 |
-
head_mask=None,
|
530 |
-
encoder_hidden_states=None,
|
531 |
-
encoder_attention_mask=None,
|
532 |
-
past_key_value=None,
|
533 |
-
output_attentions=False,
|
534 |
-
):
|
535 |
-
hidden_states_ln = self.LayerNorm(hidden_states)
|
536 |
-
self_outputs = self.self(
|
537 |
-
hidden_states_ln,
|
538 |
-
attention_mask,
|
539 |
-
head_mask,
|
540 |
-
encoder_hidden_states,
|
541 |
-
encoder_attention_mask,
|
542 |
-
past_key_value,
|
543 |
-
output_attentions,
|
544 |
-
)
|
545 |
-
attention_output = self.output(self_outputs[0], hidden_states)
|
546 |
-
outputs = (attention_output,) + self_outputs[
|
547 |
-
1:
|
548 |
-
] # add attentions if we output them
|
549 |
-
return outputs
|
550 |
-
|
551 |
-
|
552 |
-
# Copied from transformers.models.esm.modeling_esm.EsmIntermediate with Esm->OmniGenome
|
553 |
-
class OmniGenomeIntermediate(nn.Module):
|
554 |
-
def __init__(self, config):
|
555 |
-
super().__init__()
|
556 |
-
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
557 |
-
|
558 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
559 |
-
hidden_states = self.dense(hidden_states)
|
560 |
-
hidden_states = gelu(hidden_states)
|
561 |
-
return hidden_states
|
562 |
-
|
563 |
-
|
564 |
-
# Copied from transformers.models.esm.modeling_esm.EsmOutput with Esm->OmniGenome
|
565 |
-
class OmniGenomeOutput(nn.Module):
|
566 |
-
def __init__(self, config):
|
567 |
-
super().__init__()
|
568 |
-
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
569 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
570 |
-
|
571 |
-
def forward(self, hidden_states, input_tensor):
|
572 |
-
hidden_states = self.dense(hidden_states)
|
573 |
-
hidden_states = self.dropout(hidden_states)
|
574 |
-
hidden_states = hidden_states + input_tensor
|
575 |
-
return hidden_states
|
576 |
-
|
577 |
-
|
578 |
-
# Copied from transformers.models.esm.modeling_esm.EsmLayer with Esm->OmniGenome
|
579 |
-
class OmniGenomeLayer(nn.Module):
|
580 |
-
def __init__(self, config):
|
581 |
-
super().__init__()
|
582 |
-
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
583 |
-
self.seq_len_dim = 1
|
584 |
-
self.attention = OmniGenomeAttention(config)
|
585 |
-
self.is_decoder = config.is_decoder
|
586 |
-
self.add_cross_attention = config.add_cross_attention
|
587 |
-
if self.add_cross_attention:
|
588 |
-
if not self.is_decoder:
|
589 |
-
raise RuntimeError(
|
590 |
-
f"{self} should be used as a decoder model if cross attention is added"
|
591 |
-
)
|
592 |
-
self.crossattention = OmniGenomeAttention(config)
|
593 |
-
self.intermediate = OmniGenomeIntermediate(config)
|
594 |
-
self.output = OmniGenomeOutput(config)
|
595 |
-
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
596 |
-
|
597 |
-
def forward(
|
598 |
-
self,
|
599 |
-
hidden_states,
|
600 |
-
attention_mask=None,
|
601 |
-
head_mask=None,
|
602 |
-
encoder_hidden_states=None,
|
603 |
-
encoder_attention_mask=None,
|
604 |
-
past_key_value=None,
|
605 |
-
output_attentions=False,
|
606 |
-
):
|
607 |
-
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
608 |
-
self_attn_past_key_value = (
|
609 |
-
past_key_value[:2] if past_key_value is not None else None
|
610 |
-
)
|
611 |
-
self_attention_outputs = self.attention(
|
612 |
-
hidden_states,
|
613 |
-
attention_mask,
|
614 |
-
head_mask,
|
615 |
-
output_attentions=output_attentions,
|
616 |
-
past_key_value=self_attn_past_key_value,
|
617 |
-
)
|
618 |
-
attention_output = self_attention_outputs[0]
|
619 |
-
|
620 |
-
# if decoder, the last output is tuple of self-attn cache
|
621 |
-
if self.is_decoder:
|
622 |
-
outputs = self_attention_outputs[1:-1]
|
623 |
-
present_key_value = self_attention_outputs[-1]
|
624 |
-
else:
|
625 |
-
outputs = self_attention_outputs[
|
626 |
-
1:
|
627 |
-
] # add self attentions if we output attention weights
|
628 |
-
|
629 |
-
cross_attn_present_key_value = None
|
630 |
-
if self.is_decoder and encoder_hidden_states is not None:
|
631 |
-
if not hasattr(self, "crossattention"):
|
632 |
-
raise AttributeError(
|
633 |
-
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
|
634 |
-
" with cross-attention layers by setting `config.add_cross_attention=True`"
|
635 |
-
)
|
636 |
-
|
637 |
-
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
638 |
-
cross_attn_past_key_value = (
|
639 |
-
past_key_value[-2:] if past_key_value is not None else None
|
640 |
-
)
|
641 |
-
cross_attention_outputs = self.crossattention(
|
642 |
-
attention_output,
|
643 |
-
attention_mask,
|
644 |
-
head_mask,
|
645 |
-
encoder_hidden_states,
|
646 |
-
encoder_attention_mask,
|
647 |
-
cross_attn_past_key_value,
|
648 |
-
output_attentions,
|
649 |
-
)
|
650 |
-
attention_output = cross_attention_outputs[0]
|
651 |
-
outputs = (
|
652 |
-
outputs + cross_attention_outputs[1:-1]
|
653 |
-
) # add cross attentions if we output attention weights
|
654 |
-
|
655 |
-
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
656 |
-
cross_attn_present_key_value = cross_attention_outputs[-1]
|
657 |
-
present_key_value = present_key_value + cross_attn_present_key_value
|
658 |
-
|
659 |
-
layer_output = self.feed_forward_chunk(attention_output)
|
660 |
-
|
661 |
-
outputs = (layer_output,) + outputs
|
662 |
-
|
663 |
-
# if decoder, return the attn key/values as the last output
|
664 |
-
if self.is_decoder:
|
665 |
-
outputs = outputs + (present_key_value,)
|
666 |
-
return outputs
|
667 |
-
|
668 |
-
def feed_forward_chunk(self, attention_output):
|
669 |
-
attention_output_ln = self.LayerNorm(attention_output)
|
670 |
-
intermediate_output = self.intermediate(attention_output_ln)
|
671 |
-
layer_output = self.output(intermediate_output, attention_output)
|
672 |
-
return layer_output
|
673 |
-
|
674 |
-
|
675 |
-
# Copied from transformers.models.esm.modeling_esm.EsmEncoder with Esm->OmniGenome
|
676 |
-
class OmniGenomeEncoder(nn.Module):
|
677 |
-
def __init__(self, config):
|
678 |
-
super().__init__()
|
679 |
-
self.config = config
|
680 |
-
self.layer = nn.ModuleList(
|
681 |
-
[OmniGenomeLayer(config) for _ in range(config.num_hidden_layers)]
|
682 |
-
)
|
683 |
-
self.emb_layer_norm_after = nn.LayerNorm(
|
684 |
-
config.hidden_size, eps=config.layer_norm_eps
|
685 |
-
)
|
686 |
-
self.gradient_checkpointing = False
|
687 |
-
|
688 |
-
def forward(
|
689 |
-
self,
|
690 |
-
hidden_states,
|
691 |
-
attention_mask=None,
|
692 |
-
head_mask=None,
|
693 |
-
encoder_hidden_states=None,
|
694 |
-
encoder_attention_mask=None,
|
695 |
-
past_key_values=None,
|
696 |
-
use_cache=None,
|
697 |
-
output_attentions=False,
|
698 |
-
output_hidden_states=False,
|
699 |
-
return_dict=True,
|
700 |
-
):
|
701 |
-
if self.gradient_checkpointing and self.training:
|
702 |
-
if use_cache:
|
703 |
-
logger.warning_once(
|
704 |
-
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
705 |
-
"`use_cache=False`..."
|
706 |
-
)
|
707 |
-
use_cache = False
|
708 |
-
all_hidden_states = () if output_hidden_states else None
|
709 |
-
all_self_attentions = () if output_attentions else None
|
710 |
-
all_cross_attentions = (
|
711 |
-
() if output_attentions and self.config.add_cross_attention else None
|
712 |
-
)
|
713 |
-
|
714 |
-
next_decoder_cache = () if use_cache else None
|
715 |
-
for i, layer_module in enumerate(self.layer):
|
716 |
-
if output_hidden_states:
|
717 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
718 |
-
|
719 |
-
layer_head_mask = head_mask[i] if head_mask is not None else None
|
720 |
-
past_key_value = past_key_values[i] if past_key_values is not None else None
|
721 |
-
|
722 |
-
if self.gradient_checkpointing and self.training:
|
723 |
-
layer_outputs = self._gradient_checkpointing_func(
|
724 |
-
layer_module.__call__,
|
725 |
-
hidden_states,
|
726 |
-
attention_mask,
|
727 |
-
layer_head_mask,
|
728 |
-
encoder_hidden_states,
|
729 |
-
encoder_attention_mask,
|
730 |
-
past_key_value,
|
731 |
-
output_attentions,
|
732 |
-
)
|
733 |
-
else:
|
734 |
-
layer_outputs = layer_module(
|
735 |
-
hidden_states,
|
736 |
-
attention_mask,
|
737 |
-
layer_head_mask,
|
738 |
-
encoder_hidden_states,
|
739 |
-
encoder_attention_mask,
|
740 |
-
past_key_value,
|
741 |
-
output_attentions,
|
742 |
-
)
|
743 |
-
|
744 |
-
hidden_states = layer_outputs[0]
|
745 |
-
if use_cache:
|
746 |
-
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
|
747 |
-
if output_attentions:
|
748 |
-
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
749 |
-
if self.config.add_cross_attention:
|
750 |
-
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
751 |
-
|
752 |
-
if self.emb_layer_norm_after:
|
753 |
-
hidden_states = self.emb_layer_norm_after(hidden_states)
|
754 |
-
|
755 |
-
if output_hidden_states:
|
756 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
757 |
-
|
758 |
-
if not return_dict:
|
759 |
-
return tuple(
|
760 |
-
v
|
761 |
-
for v in [
|
762 |
-
hidden_states,
|
763 |
-
next_decoder_cache,
|
764 |
-
all_hidden_states,
|
765 |
-
all_self_attentions,
|
766 |
-
all_cross_attentions,
|
767 |
-
]
|
768 |
-
if v is not None
|
769 |
-
)
|
770 |
-
return BaseModelOutputWithPastAndCrossAttentions(
|
771 |
-
last_hidden_state=hidden_states,
|
772 |
-
past_key_values=next_decoder_cache,
|
773 |
-
hidden_states=all_hidden_states,
|
774 |
-
attentions=all_self_attentions,
|
775 |
-
cross_attentions=all_cross_attentions,
|
776 |
-
)
|
777 |
-
|
778 |
-
|
779 |
-
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->OmniGenome
|
780 |
-
class OmniGenomePooler(nn.Module):
|
781 |
-
def __init__(self, config):
|
782 |
-
super().__init__()
|
783 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
784 |
-
self.activation = nn.Tanh()
|
785 |
-
|
786 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
787 |
-
# We "pool" the model by simply taking the hidden state corresponding
|
788 |
-
# to the first token.
|
789 |
-
first_token_tensor = hidden_states[:, 0]
|
790 |
-
pooled_output = self.dense(first_token_tensor)
|
791 |
-
pooled_output = self.activation(pooled_output)
|
792 |
-
return pooled_output
|
793 |
-
|
794 |
-
|
795 |
-
# Copied from transformers.models.esm.modeling_esm.EsmPreTrainedModel with Esm->OmniGenome
|
796 |
-
class OmniGenomePreTrainedModel(PreTrainedModel):
|
797 |
-
"""
|
798 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
799 |
-
models.
|
800 |
-
"""
|
801 |
-
|
802 |
-
config_class = OmniGenomeConfig
|
803 |
-
base_model_prefix = "OmniGenome"
|
804 |
-
supports_gradient_checkpointing = True
|
805 |
-
_no_split_modules = [
|
806 |
-
"OmniGenomeLayer",
|
807 |
-
"OmniGenomeFoldTriangularSelfAttentionBlock",
|
808 |
-
"OmniGenomeEmbeddings",
|
809 |
-
]
|
810 |
-
|
811 |
-
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
812 |
-
def _init_weights(self, module):
|
813 |
-
"""Initialize the weights"""
|
814 |
-
if isinstance(module, nn.Linear):
|
815 |
-
# Slightly different from the TF version which uses truncated_normal for initialization
|
816 |
-
# cf https://github.com/pytorch/pytorch/pull/5617
|
817 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
818 |
-
if module.bias is not None:
|
819 |
-
module.bias.data.zero_()
|
820 |
-
elif isinstance(module, nn.Embedding):
|
821 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
822 |
-
if module.padding_idx is not None:
|
823 |
-
module.weight.data[module.padding_idx].zero_()
|
824 |
-
elif isinstance(module, nn.LayerNorm):
|
825 |
-
module.bias.data.zero_()
|
826 |
-
module.weight.data.fill_(1.0)
|
827 |
-
|
828 |
-
|
829 |
-
OmniGenome_START_DOCSTRING = r"""
|
830 |
-
|
831 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
832 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
833 |
-
etc.)
|
834 |
-
|
835 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
836 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
837 |
-
and behavior.
|
838 |
-
|
839 |
-
Parameters:
|
840 |
-
config ([`OmniGenomeConfig`]): Model configuration class with all the parameters of the
|
841 |
-
model. Initializing with a config file does not load the weights associated with the model, only the
|
842 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
843 |
-
"""
|
844 |
-
|
845 |
-
OmniGenome_INPUTS_DOCSTRING = r"""
|
846 |
-
Args:
|
847 |
-
input_ids (`torch.LongTensor` of shape `({0})`):
|
848 |
-
Indices of input sequence tokens in the vocabulary.
|
849 |
-
|
850 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
851 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
852 |
-
|
853 |
-
[What are input IDs?](../glossary#input-ids)
|
854 |
-
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
855 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
856 |
-
|
857 |
-
- 1 for tokens that are **not masked**,
|
858 |
-
- 0 for tokens that are **masked**.
|
859 |
-
|
860 |
-
[What are attention masks?](../glossary#attention-mask)
|
861 |
-
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
862 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
863 |
-
config.max_position_embeddings - 1]`.
|
864 |
-
|
865 |
-
[What are position IDs?](../glossary#position-ids)
|
866 |
-
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
867 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
868 |
-
|
869 |
-
- 1 indicates the head is **not masked**,
|
870 |
-
- 0 indicates the head is **masked**.
|
871 |
-
|
872 |
-
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
873 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
874 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
875 |
-
model's internal embedding lookup matrix.
|
876 |
-
output_attentions (`bool`, *optional*):
|
877 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
878 |
-
tensors for more detail.
|
879 |
-
output_hidden_states (`bool`, *optional*):
|
880 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
881 |
-
more detail.
|
882 |
-
return_dict (`bool`, *optional*):
|
883 |
-
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
884 |
-
"""
|
885 |
-
|
886 |
-
|
887 |
-
@add_start_docstrings(
|
888 |
-
"The bare OmniGenome Model transformer outputting raw hidden-states without any specific head on top.",
|
889 |
-
OmniGenome_START_DOCSTRING,
|
890 |
-
)
|
891 |
-
# Copied from transformers.models.esm.modeling_esm.EsmModel with Esm->OmniGenome
|
892 |
-
class OmniGenomeModel(OmniGenomePreTrainedModel):
|
893 |
-
"""
|
894 |
-
|
895 |
-
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
896 |
-
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
897 |
-
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
898 |
-
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
899 |
-
|
900 |
-
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
901 |
-
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
902 |
-
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
903 |
-
"""
|
904 |
-
|
905 |
-
def __init__(self, config, add_pooling_layer=True):
|
906 |
-
super().__init__(config)
|
907 |
-
self.config = config
|
908 |
-
|
909 |
-
self.embeddings = OmniGenomeEmbeddings(config)
|
910 |
-
self.encoder = OmniGenomeEncoder(config)
|
911 |
-
|
912 |
-
self.pooler = OmniGenomePooler(config) if add_pooling_layer else None
|
913 |
-
|
914 |
-
self.contact_head = OmniGenomeContactPredictionHead(
|
915 |
-
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
|
916 |
-
)
|
917 |
-
|
918 |
-
# Initialize weights and apply final processing
|
919 |
-
self.post_init()
|
920 |
-
|
921 |
-
def get_input_embeddings(self):
|
922 |
-
return self.embeddings.word_embeddings
|
923 |
-
|
924 |
-
def set_input_embeddings(self, value):
|
925 |
-
self.embeddings.word_embeddings = value
|
926 |
-
|
927 |
-
def _prune_heads(self, heads_to_prune):
|
928 |
-
"""
|
929 |
-
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
930 |
-
class PreTrainedModel
|
931 |
-
"""
|
932 |
-
for layer, heads in heads_to_prune.items():
|
933 |
-
self.encoder.layer[layer].attention.prune_heads(heads)
|
934 |
-
|
935 |
-
@add_start_docstrings_to_model_forward(
|
936 |
-
OmniGenome_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")
|
937 |
-
)
|
938 |
-
@add_code_sample_docstrings(
|
939 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
940 |
-
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
941 |
-
config_class=_CONFIG_FOR_DOC,
|
942 |
-
)
|
943 |
-
def forward(
|
944 |
-
self,
|
945 |
-
input_ids: Optional[torch.Tensor] = None,
|
946 |
-
attention_mask: Optional[torch.Tensor] = None,
|
947 |
-
position_ids: Optional[torch.Tensor] = None,
|
948 |
-
head_mask: Optional[torch.Tensor] = None,
|
949 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
950 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
951 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
952 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
953 |
-
use_cache: Optional[bool] = None,
|
954 |
-
output_attentions: Optional[bool] = None,
|
955 |
-
output_hidden_states: Optional[bool] = None,
|
956 |
-
return_dict: Optional[bool] = None,
|
957 |
-
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
958 |
-
r"""
|
959 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
960 |
-
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
961 |
-
the model is configured as a decoder.
|
962 |
-
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
963 |
-
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
964 |
-
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
965 |
-
|
966 |
-
- 1 for tokens that are **not masked**,
|
967 |
-
- 0 for tokens that are **masked**.
|
968 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
969 |
-
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
970 |
-
|
971 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
972 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
973 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
974 |
-
use_cache (`bool`, *optional*):
|
975 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
976 |
-
`past_key_values`).
|
977 |
-
"""
|
978 |
-
output_attentions = (
|
979 |
-
output_attentions
|
980 |
-
if output_attentions is not None
|
981 |
-
else self.config.output_attentions
|
982 |
-
)
|
983 |
-
output_hidden_states = (
|
984 |
-
output_hidden_states
|
985 |
-
if output_hidden_states is not None
|
986 |
-
else self.config.output_hidden_states
|
987 |
-
)
|
988 |
-
return_dict = (
|
989 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
990 |
-
)
|
991 |
-
|
992 |
-
if self.config.is_decoder:
|
993 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
994 |
-
else:
|
995 |
-
use_cache = False
|
996 |
-
|
997 |
-
if input_ids is not None and inputs_embeds is not None:
|
998 |
-
raise ValueError(
|
999 |
-
"You cannot specify both input_ids and inputs_embeds at the same time"
|
1000 |
-
)
|
1001 |
-
elif input_ids is not None:
|
1002 |
-
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1003 |
-
input_shape = input_ids.size()
|
1004 |
-
elif inputs_embeds is not None:
|
1005 |
-
input_shape = inputs_embeds.size()[:-1]
|
1006 |
-
else:
|
1007 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1008 |
-
|
1009 |
-
batch_size, seq_length = input_shape
|
1010 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1011 |
-
|
1012 |
-
# past_key_values_length
|
1013 |
-
past_key_values_length = (
|
1014 |
-
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1015 |
-
)
|
1016 |
-
|
1017 |
-
if attention_mask is None:
|
1018 |
-
attention_mask = torch.ones(
|
1019 |
-
((batch_size, seq_length + past_key_values_length)), device=device
|
1020 |
-
)
|
1021 |
-
|
1022 |
-
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1023 |
-
# ourselves in which case we just need to make it broadcastable to all heads.
|
1024 |
-
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
1025 |
-
attention_mask, input_shape
|
1026 |
-
)
|
1027 |
-
|
1028 |
-
# If a 2D or 3D attention mask is provided for the cross-attention
|
1029 |
-
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1030 |
-
if self.config.is_decoder and encoder_hidden_states is not None:
|
1031 |
-
(
|
1032 |
-
encoder_batch_size,
|
1033 |
-
encoder_sequence_length,
|
1034 |
-
_,
|
1035 |
-
) = encoder_hidden_states.size()
|
1036 |
-
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1037 |
-
if encoder_attention_mask is None:
|
1038 |
-
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1039 |
-
encoder_extended_attention_mask = self.invert_attention_mask(
|
1040 |
-
encoder_attention_mask
|
1041 |
-
)
|
1042 |
-
else:
|
1043 |
-
encoder_extended_attention_mask = None
|
1044 |
-
|
1045 |
-
# Prepare head mask if needed
|
1046 |
-
# 1.0 in head_mask indicate we keep the head
|
1047 |
-
# attention_probs has shape bsz x n_heads x N x N
|
1048 |
-
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1049 |
-
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1050 |
-
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1051 |
-
|
1052 |
-
embedding_output = self.embeddings(
|
1053 |
-
input_ids=input_ids,
|
1054 |
-
position_ids=position_ids,
|
1055 |
-
attention_mask=attention_mask,
|
1056 |
-
inputs_embeds=inputs_embeds,
|
1057 |
-
past_key_values_length=past_key_values_length,
|
1058 |
-
)
|
1059 |
-
encoder_outputs = self.encoder(
|
1060 |
-
embedding_output,
|
1061 |
-
attention_mask=extended_attention_mask,
|
1062 |
-
head_mask=head_mask,
|
1063 |
-
encoder_hidden_states=encoder_hidden_states,
|
1064 |
-
encoder_attention_mask=encoder_extended_attention_mask,
|
1065 |
-
past_key_values=past_key_values,
|
1066 |
-
use_cache=use_cache,
|
1067 |
-
output_attentions=output_attentions,
|
1068 |
-
output_hidden_states=output_hidden_states,
|
1069 |
-
return_dict=return_dict,
|
1070 |
-
)
|
1071 |
-
sequence_output = encoder_outputs[0]
|
1072 |
-
pooled_output = (
|
1073 |
-
self.pooler(sequence_output) if self.pooler is not None else None
|
1074 |
-
)
|
1075 |
-
|
1076 |
-
if not return_dict:
|
1077 |
-
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1078 |
-
|
1079 |
-
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1080 |
-
last_hidden_state=sequence_output,
|
1081 |
-
pooler_output=pooled_output,
|
1082 |
-
past_key_values=encoder_outputs.past_key_values,
|
1083 |
-
hidden_states=encoder_outputs.hidden_states,
|
1084 |
-
attentions=encoder_outputs.attentions,
|
1085 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
1086 |
-
)
|
1087 |
-
|
1088 |
-
def predict_contacts(self, tokens, attention_mask):
|
1089 |
-
attns = self(
|
1090 |
-
tokens,
|
1091 |
-
attention_mask=attention_mask,
|
1092 |
-
return_dict=True,
|
1093 |
-
output_attentions=True,
|
1094 |
-
).attentions
|
1095 |
-
attns = torch.stack(attns, dim=1) # Matches the original model layout
|
1096 |
-
# In the original model, attentions for padding tokens are completely zeroed out.
|
1097 |
-
# This makes no difference most of the time because the other tokens won't attend to them,
|
1098 |
-
# but it does for the contact prediction task, which takes attentions as input,
|
1099 |
-
# so we have to mimic that here.
|
1100 |
-
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
|
1101 |
-
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
|
1102 |
-
return self.contact_head(tokens, attns)
|
1103 |
-
|
1104 |
-
|
1105 |
-
@add_start_docstrings(
|
1106 |
-
"""OmniGenome Model with a `language modeling` head on top.""", OmniGenome_START_DOCSTRING
|
1107 |
-
)
|
1108 |
-
# Copied from transformers.models.esm.modeling_esm.EsmForMaskedLM with Esm->OmniGenome
|
1109 |
-
class OmniGenomeForMaskedLM(OmniGenomePreTrainedModel):
|
1110 |
-
_tied_weights_keys = ["lm_head.decoder.weight"]
|
1111 |
-
|
1112 |
-
def __init__(self, config):
|
1113 |
-
super().__init__(config)
|
1114 |
-
|
1115 |
-
if config.is_decoder:
|
1116 |
-
logger.warning(
|
1117 |
-
"If you want to use `OmniGenomeForMaskedLM` make sure `config.is_decoder=False` for "
|
1118 |
-
"bi-directional self-attention."
|
1119 |
-
)
|
1120 |
-
|
1121 |
-
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
1122 |
-
self.lm_head = OmniGenomeLMHead(config)
|
1123 |
-
self.init_weights()
|
1124 |
-
|
1125 |
-
def get_output_embeddings(self):
|
1126 |
-
return self.lm_head.decoder
|
1127 |
-
|
1128 |
-
def set_output_embeddings(self, new_embeddings):
|
1129 |
-
self.lm_head.decoder = new_embeddings
|
1130 |
-
|
1131 |
-
@add_start_docstrings_to_model_forward(
|
1132 |
-
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1133 |
-
)
|
1134 |
-
@add_code_sample_docstrings(
|
1135 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
1136 |
-
output_type=MaskedLMOutput,
|
1137 |
-
config_class=_CONFIG_FOR_DOC,
|
1138 |
-
mask="<mask>",
|
1139 |
-
)
|
1140 |
-
def forward(
|
1141 |
-
self,
|
1142 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1143 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1144 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1145 |
-
head_mask: Optional[torch.Tensor] = None,
|
1146 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1147 |
-
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1148 |
-
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1149 |
-
labels: Optional[torch.LongTensor] = None,
|
1150 |
-
output_attentions: Optional[bool] = None,
|
1151 |
-
output_hidden_states: Optional[bool] = None,
|
1152 |
-
return_dict: Optional[bool] = None,
|
1153 |
-
) -> Union[Tuple, MaskedLMOutput]:
|
1154 |
-
r"""
|
1155 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1156 |
-
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1157 |
-
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1158 |
-
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1159 |
-
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1160 |
-
Used to hide legacy arguments that have been deprecated.
|
1161 |
-
"""
|
1162 |
-
return_dict = (
|
1163 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1164 |
-
)
|
1165 |
-
|
1166 |
-
outputs = self.OmniGenome(
|
1167 |
-
input_ids,
|
1168 |
-
attention_mask=attention_mask,
|
1169 |
-
position_ids=position_ids,
|
1170 |
-
head_mask=head_mask,
|
1171 |
-
inputs_embeds=inputs_embeds,
|
1172 |
-
encoder_hidden_states=encoder_hidden_states,
|
1173 |
-
encoder_attention_mask=encoder_attention_mask,
|
1174 |
-
output_attentions=output_attentions,
|
1175 |
-
output_hidden_states=output_hidden_states,
|
1176 |
-
return_dict=return_dict,
|
1177 |
-
)
|
1178 |
-
sequence_output = outputs[0]
|
1179 |
-
prediction_scores = self.lm_head(sequence_output)
|
1180 |
-
|
1181 |
-
masked_lm_loss = None
|
1182 |
-
if labels is not None:
|
1183 |
-
loss_fct = CrossEntropyLoss()
|
1184 |
-
|
1185 |
-
labels = labels.to(prediction_scores.device)
|
1186 |
-
masked_lm_loss = loss_fct(
|
1187 |
-
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
1188 |
-
)
|
1189 |
-
|
1190 |
-
if not return_dict:
|
1191 |
-
output = (prediction_scores,) + outputs[2:]
|
1192 |
-
return (
|
1193 |
-
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1194 |
-
)
|
1195 |
-
|
1196 |
-
return MaskedLMOutput(
|
1197 |
-
loss=masked_lm_loss,
|
1198 |
-
logits=prediction_scores,
|
1199 |
-
hidden_states=outputs.hidden_states,
|
1200 |
-
attentions=outputs.attentions,
|
1201 |
-
)
|
1202 |
-
|
1203 |
-
def predict_contacts(self, tokens, attention_mask):
|
1204 |
-
return self.OmniGenome.predict_contacts(tokens, attention_mask=attention_mask)
|
1205 |
-
|
1206 |
-
|
1207 |
-
# Copied from transformers.models.esm.modeling_esm.EsmLMHead with Esm->OmniGenome
|
1208 |
-
class OmniGenomeLMHead(nn.Module):
|
1209 |
-
"""OmniGenome Head for masked language modeling."""
|
1210 |
-
|
1211 |
-
def __init__(self, config):
|
1212 |
-
super().__init__()
|
1213 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1214 |
-
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1215 |
-
|
1216 |
-
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1217 |
-
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1218 |
-
|
1219 |
-
def forward(self, features, **kwargs):
|
1220 |
-
x = self.dense(features)
|
1221 |
-
x = gelu(x)
|
1222 |
-
x = self.layer_norm(x)
|
1223 |
-
|
1224 |
-
# project back to size of vocabulary with bias
|
1225 |
-
x = self.decoder(x) + self.bias
|
1226 |
-
return x
|
1227 |
-
|
1228 |
-
|
1229 |
-
@add_start_docstrings(
|
1230 |
-
"""
|
1231 |
-
OmniGenome Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1232 |
-
output) e.g. for GLUE tasks.
|
1233 |
-
""",
|
1234 |
-
OmniGenome_START_DOCSTRING,
|
1235 |
-
)
|
1236 |
-
class OmniGenomeForSequenceClassification(OmniGenomePreTrainedModel):
|
1237 |
-
def __init__(self, config):
|
1238 |
-
super().__init__(config)
|
1239 |
-
self.num_labels = config.num_labels
|
1240 |
-
self.config = config
|
1241 |
-
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
1242 |
-
self.pooler = OmniGenomePooler(config)
|
1243 |
-
self.classifier = OmniGenomeClassificationHead(config)
|
1244 |
-
self.init_weights()
|
1245 |
-
|
1246 |
-
@add_start_docstrings_to_model_forward(
|
1247 |
-
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1248 |
-
)
|
1249 |
-
@add_code_sample_docstrings(
|
1250 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
1251 |
-
output_type=SequenceClassifierOutput,
|
1252 |
-
config_class=_CONFIG_FOR_DOC,
|
1253 |
-
)
|
1254 |
-
def forward(
|
1255 |
-
self,
|
1256 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1257 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1258 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1259 |
-
head_mask: Optional[torch.Tensor] = None,
|
1260 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1261 |
-
labels: Optional[torch.LongTensor] = None,
|
1262 |
-
output_attentions: Optional[bool] = None,
|
1263 |
-
output_hidden_states: Optional[bool] = None,
|
1264 |
-
return_dict: Optional[bool] = None,
|
1265 |
-
) -> Union[Tuple, SequenceClassifierOutput]:
|
1266 |
-
r"""
|
1267 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1268 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1269 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1270 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1271 |
-
"""
|
1272 |
-
return_dict = (
|
1273 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1274 |
-
)
|
1275 |
-
|
1276 |
-
outputs = self.OmniGenome(
|
1277 |
-
input_ids,
|
1278 |
-
attention_mask=attention_mask,
|
1279 |
-
position_ids=position_ids,
|
1280 |
-
head_mask=head_mask,
|
1281 |
-
inputs_embeds=inputs_embeds,
|
1282 |
-
output_attentions=output_attentions,
|
1283 |
-
output_hidden_states=output_hidden_states,
|
1284 |
-
return_dict=return_dict,
|
1285 |
-
)
|
1286 |
-
last_hidden_state = outputs[0]
|
1287 |
-
last_hidden_state = self.dense(last_hidden_state)
|
1288 |
-
pooled_output = self.pooler(last_hidden_state)
|
1289 |
-
logits = self.classifier(pooled_output)
|
1290 |
-
|
1291 |
-
loss = None
|
1292 |
-
if labels is not None:
|
1293 |
-
labels = labels.to(logits.device)
|
1294 |
-
|
1295 |
-
if self.config.problem_type is None:
|
1296 |
-
if self.num_labels == 1:
|
1297 |
-
self.config.problem_type = "regression"
|
1298 |
-
elif self.num_labels > 1 and (
|
1299 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
1300 |
-
):
|
1301 |
-
self.config.problem_type = "single_label_classification"
|
1302 |
-
else:
|
1303 |
-
self.config.problem_type = "multi_label_classification"
|
1304 |
-
|
1305 |
-
if self.config.problem_type == "regression":
|
1306 |
-
loss_fct = MSELoss()
|
1307 |
-
if self.num_labels == 1:
|
1308 |
-
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1309 |
-
else:
|
1310 |
-
loss = loss_fct(logits, labels)
|
1311 |
-
elif self.config.problem_type == "single_label_classification":
|
1312 |
-
loss_fct = CrossEntropyLoss()
|
1313 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1314 |
-
elif self.config.problem_type == "multi_label_classification":
|
1315 |
-
loss_fct = BCEWithLogitsLoss()
|
1316 |
-
loss = loss_fct(logits, labels)
|
1317 |
-
|
1318 |
-
if not return_dict:
|
1319 |
-
output = (logits,) + outputs[2:]
|
1320 |
-
return ((loss,) + output) if loss is not None else output
|
1321 |
-
|
1322 |
-
return SequenceClassifierOutput(
|
1323 |
-
loss=loss,
|
1324 |
-
logits=logits,
|
1325 |
-
hidden_states=outputs.hidden_states,
|
1326 |
-
attentions=outputs.attentions,
|
1327 |
-
)
|
1328 |
-
|
1329 |
-
|
1330 |
-
@add_start_docstrings(
|
1331 |
-
"""
|
1332 |
-
OmniGenome Model with a token classification head on top (a linear layer on top of the hidden-states output)
|
1333 |
-
Note that this model is pre-trained for RNA secondary structure prediction and can be used for zero-shot RNA
|
1334 |
-
secondary structure prediction. Please find more advanced usages at https://github.com/yangheng95/OmniGenome
|
1335 |
-
This model can be fine-tuned for other token classification tasks.
|
1336 |
-
""",
|
1337 |
-
OmniGenome_START_DOCSTRING,
|
1338 |
-
)
|
1339 |
-
# Copied from transformers.models.esm.modeling_esm.EsmForTokenClassification with Esm->OmniGenome
|
1340 |
-
class OmniGenomeForTokenClassification(OmniGenomePreTrainedModel):
|
1341 |
-
def __init__(self, config):
|
1342 |
-
super().__init__(config)
|
1343 |
-
self.num_labels = config.num_labels
|
1344 |
-
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
1345 |
-
self.dense = torch.nn.Linear(config.hidden_size, config.hidden_size)
|
1346 |
-
self.classifier = torch.nn.Linear(self.config.hidden_size, self.num_labels)
|
1347 |
-
self.softmax = nn.Softmax(dim=-1)
|
1348 |
-
self.init_weights()
|
1349 |
-
|
1350 |
-
@add_start_docstrings_to_model_forward(
|
1351 |
-
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1352 |
-
)
|
1353 |
-
@add_code_sample_docstrings(
|
1354 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
1355 |
-
output_type=TokenClassifierOutput,
|
1356 |
-
config_class=_CONFIG_FOR_DOC,
|
1357 |
-
)
|
1358 |
-
def forward(
|
1359 |
-
self,
|
1360 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1361 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1362 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1363 |
-
head_mask: Optional[torch.Tensor] = None,
|
1364 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1365 |
-
labels: Optional[torch.LongTensor] = None,
|
1366 |
-
output_attentions: Optional[bool] = None,
|
1367 |
-
output_hidden_states: Optional[bool] = None,
|
1368 |
-
return_dict: Optional[bool] = None,
|
1369 |
-
) -> Union[Tuple, TokenClassifierOutput]:
|
1370 |
-
r"""
|
1371 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1372 |
-
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1373 |
-
"""
|
1374 |
-
|
1375 |
-
return_dict = (
|
1376 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
1377 |
-
)
|
1378 |
-
|
1379 |
-
outputs = self.OmniGenome(
|
1380 |
-
input_ids,
|
1381 |
-
attention_mask=attention_mask,
|
1382 |
-
position_ids=position_ids,
|
1383 |
-
head_mask=head_mask,
|
1384 |
-
inputs_embeds=inputs_embeds,
|
1385 |
-
output_attentions=output_attentions,
|
1386 |
-
output_hidden_states=output_hidden_states,
|
1387 |
-
return_dict=return_dict,
|
1388 |
-
)
|
1389 |
-
|
1390 |
-
last_hidden_state = outputs[0]
|
1391 |
-
last_hidden_state = self.dense(last_hidden_state)
|
1392 |
-
logits = self.classifier(last_hidden_state)
|
1393 |
-
logits = self.softmax(logits)
|
1394 |
-
|
1395 |
-
loss = None
|
1396 |
-
if labels is not None:
|
1397 |
-
loss_fct = CrossEntropyLoss()
|
1398 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1399 |
-
|
1400 |
-
if not return_dict:
|
1401 |
-
output = (logits,) + outputs[2:]
|
1402 |
-
return ((loss,) + output) if loss is not None else output
|
1403 |
-
|
1404 |
-
return TokenClassifierOutput(
|
1405 |
-
loss=loss,
|
1406 |
-
logits=logits,
|
1407 |
-
hidden_states=outputs.hidden_states,
|
1408 |
-
attentions=outputs.attentions,
|
1409 |
-
)
|
1410 |
-
|
1411 |
-
@staticmethod
|
1412 |
-
def verify_secondary_structure(structure):
|
1413 |
-
structure = list(structure)
|
1414 |
-
left_brackets = []
|
1415 |
-
right_brackets = []
|
1416 |
-
for i, char in enumerate(structure):
|
1417 |
-
if char == "(":
|
1418 |
-
left_brackets.append(i)
|
1419 |
-
elif char == ")":
|
1420 |
-
if left_brackets:
|
1421 |
-
left_brackets.pop()
|
1422 |
-
else:
|
1423 |
-
right_brackets.append(i)
|
1424 |
-
|
1425 |
-
for i in left_brackets:
|
1426 |
-
structure[i] = "."
|
1427 |
-
for i in right_brackets:
|
1428 |
-
structure[i] = "."
|
1429 |
-
|
1430 |
-
structure = "".join(structure)
|
1431 |
-
|
1432 |
-
return structure
|
1433 |
-
|
1434 |
-
def predict_rna_structure(
|
1435 |
-
self,
|
1436 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1437 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1438 |
-
**kwargs
|
1439 |
-
) -> List[str]:
|
1440 |
-
"""
|
1441 |
-
Predicts the secondary structure of a sequence given the logits and attention mask.
|
1442 |
-
"""
|
1443 |
-
outputs = self.forward(input_ids, attention_mask, **kwargs)
|
1444 |
-
|
1445 |
-
logits = torch.argmax(outputs.logits, dim=-1)
|
1446 |
-
lengths = torch.sum(torch.ne(torch.tensor(0), attention_mask), dim=-1)
|
1447 |
-
structures = []
|
1448 |
-
for i, length in enumerate(lengths):
|
1449 |
-
structure = logits[i, :length].cpu().numpy()
|
1450 |
-
structure = "".join(self.config.id2label[label] for label in structure)
|
1451 |
-
if self.config.verify_ss:
|
1452 |
-
structure = self.verify_secondary_structure(structure)
|
1453 |
-
structures.append(structure)
|
1454 |
-
return structures
|
1455 |
-
|
1456 |
-
|
1457 |
-
@add_start_docstrings(
|
1458 |
-
"""
|
1459 |
-
This is not a standard Seq2Seq model. Instead, this model is designed for RNA design tasks.
|
1460 |
-
This is the OmniGenome Model with a simple genetic algorithm based RNA design head on top.
|
1461 |
-
""",
|
1462 |
-
OmniGenome_START_DOCSTRING,
|
1463 |
-
)
|
1464 |
-
class OmniGenomeModelForSeq2SeqLM(OmniGenomePreTrainedModel):
|
1465 |
-
def __init__(self, config):
|
1466 |
-
super().__init__(config)
|
1467 |
-
self.num_labels = config.num_labels
|
1468 |
-
self.OmniGenome = OmniGenomeModel(config, add_pooling_layer=False)
|
1469 |
-
self.lm_head = OmniGenomeLMHead(config)
|
1470 |
-
self.num_generation = config.num_generation
|
1471 |
-
self.num_population = config.num_population
|
1472 |
-
self.init_weights()
|
1473 |
-
|
1474 |
-
self.tokenizer = None
|
1475 |
-
self.predict_structure = None
|
1476 |
-
|
1477 |
-
warnings.warn(f"This model {self.__class__.__name__} is not a real Seq2Seq model. "
|
1478 |
-
f"Instead, this model is designed for RNA design tasks")
|
1479 |
-
|
1480 |
-
@add_start_docstrings_to_model_forward(
|
1481 |
-
OmniGenome_INPUTS_DOCSTRING.format("batch_size, sequence_length")
|
1482 |
-
)
|
1483 |
-
@add_code_sample_docstrings(
|
1484 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
1485 |
-
output_type=TokenClassifierOutput,
|
1486 |
-
config_class=_CONFIG_FOR_DOC,
|
1487 |
-
)
|
1488 |
-
def forward(
|
1489 |
-
self,
|
1490 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1491 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1492 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1493 |
-
head_mask: Optional[torch.Tensor] = None,
|
1494 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1495 |
-
labels: Optional[torch.LongTensor] = None,
|
1496 |
-
output_attentions: Optional[bool] = None,
|
1497 |
-
output_hidden_states: Optional[bool] = True,
|
1498 |
-
return_dict: Optional[bool] = None,
|
1499 |
-
) -> Union[Tuple, TokenClassifierOutput]:
|
1500 |
-
r"""
|
1501 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1502 |
-
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1503 |
-
"""
|
1504 |
-
raise NotImplementedError("This model is not designed for standard Seq2Seq tasks. "
|
1505 |
-
"Use model.rna_sequence_design() for RNA sequences design instead.")
|
1506 |
-
|
1507 |
-
def rna_sequence_design(
|
1508 |
-
self,
|
1509 |
-
structure: str,
|
1510 |
-
predict_structure_func=None,
|
1511 |
-
**kwargs
|
1512 |
-
) -> List[str]:
|
1513 |
-
"""
|
1514 |
-
Assemble the RNA sequence given the reference sequence structure
|
1515 |
-
"""
|
1516 |
-
if self.tokenizer is None:
|
1517 |
-
tokenizer = kwargs.get("tokenizer", None)
|
1518 |
-
if tokenizer is None:
|
1519 |
-
from transformers import AutoTokenizer
|
1520 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
1521 |
-
else:
|
1522 |
-
self.tokenizer = tokenizer
|
1523 |
-
|
1524 |
-
candidates = self.genetic_algorithm_for_rna_design(structure, predict_structure_func=None, **kwargs)
|
1525 |
-
|
1526 |
-
return candidates
|
1527 |
-
|
1528 |
-
def genetic_algorithm_for_rna_design(self, structure, predict_structure_func=None, **kwargs):
|
1529 |
-
if predict_structure_func is None:
|
1530 |
-
import ViennaRNA
|
1531 |
-
|
1532 |
-
def predict_structure(sequence):
|
1533 |
-
return ViennaRNA.fold(sequence)[0]
|
1534 |
-
|
1535 |
-
predict_structure_func = predict_structure
|
1536 |
-
|
1537 |
-
self.predict_structure = predict_structure_func
|
1538 |
-
mutation_ratio = kwargs.get("mutation_ratio", 0.2)
|
1539 |
-
num_population = kwargs.get("num_population", self.num_population)
|
1540 |
-
num_generation = kwargs.get("num_generation", self.num_generation)
|
1541 |
-
import tqdm
|
1542 |
-
population = self.init_population(structure, num_population)
|
1543 |
-
population = self.mlm_mutate(population, structure, mutation_ratio=mutation_ratio)
|
1544 |
-
for generation_id in tqdm.tqdm(range(num_generation), desc="Designing RNA Sequence"):
|
1545 |
-
population_fitness = self.sequence_fitness(population, structure)[:num_population]
|
1546 |
-
population = sorted(zip(population, population_fitness), key=lambda x: x[1])[:num_population]
|
1547 |
-
population = [x[0] for x in population]
|
1548 |
-
next_generation = population # Elitism
|
1549 |
-
next_generation += self.crossover(population, structure)
|
1550 |
-
next_generation += self.mlm_mutate(next_generation, structure, mutation_ratio)
|
1551 |
-
fitness_values = self.sequence_fitness(next_generation, structure)
|
1552 |
-
next_generation = sorted(zip(next_generation, fitness_values), key=lambda x: x[1])
|
1553 |
-
|
1554 |
-
candidate_sequences = []
|
1555 |
-
for sequence, fitness in next_generation:
|
1556 |
-
if fitness == 0:
|
1557 |
-
candidate_sequences.append(sequence)
|
1558 |
-
else:
|
1559 |
-
break
|
1560 |
-
if candidate_sequences:
|
1561 |
-
return candidate_sequences
|
1562 |
-
print(f"Generation {generation_id}: {next_generation[0][0]} with fitness {next_generation[0][1]}")
|
1563 |
-
population = [x[0] for x in next_generation[:num_population]]
|
1564 |
-
|
1565 |
-
return []
|
1566 |
-
|
1567 |
-
def init_population(self, structure, num_population):
|
1568 |
-
# Initialize lists to store population data and inputs for masked language model
|
1569 |
-
population = []
|
1570 |
-
mlm_inputs = []
|
1571 |
-
# Iterate over the number of individuals in the population
|
1572 |
-
for _ in range(num_population): # Changed from self.num_population to num_population
|
1573 |
-
# Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
|
1574 |
-
masked_sequence = [
|
1575 |
-
random.choice(["A", "G", "C", "T", "<mask>"])
|
1576 |
-
for _ in range(len(structure))
|
1577 |
-
]
|
1578 |
-
masked_sequence_str = "".join(masked_sequence)
|
1579 |
-
mlm_inputs.append(f"{masked_sequence_str}<eos>{''.join(structure)}")
|
1580 |
-
|
1581 |
-
# Call a function to predict outputs using the masked language model
|
1582 |
-
outputs = self.mlm_predict(mlm_inputs, structure)
|
1583 |
-
|
1584 |
-
# Decode the mlm outputs and construct the initial population
|
1585 |
-
for i in range(len(outputs)):
|
1586 |
-
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
1587 |
-
fixed_sequence = [
|
1588 |
-
x if x in "AGCT" else random.choice(["G", "C"])
|
1589 |
-
for x, y in zip(sequence, list(mlm_inputs[i].replace('<mask>', '$')))
|
1590 |
-
]
|
1591 |
-
population.append("".join(fixed_sequence))
|
1592 |
-
|
1593 |
-
return population
|
1594 |
-
|
1595 |
-
def mlm_mutate(self, population, structure, mutation_ratio=0.2):
|
1596 |
-
def mutate(sequence, mutation_rate=0.2):
|
1597 |
-
sequence = np.array(list(sequence), dtype=np.str_)
|
1598 |
-
probability_matrix = np.full(sequence.shape, mutation_rate)
|
1599 |
-
masked_indices = np.random.rand(*sequence.shape) < probability_matrix
|
1600 |
-
sequence[masked_indices] = "$"
|
1601 |
-
mut_seq = "".join(sequence.tolist()).replace("$", "<mask>")
|
1602 |
-
return mut_seq
|
1603 |
-
def mutate_with_spans_mask(sequence, mutation_rate=0.2):
|
1604 |
-
sequence = np.array(list(sequence), dtype=np.str_)
|
1605 |
-
length = len(sequence)
|
1606 |
-
num_mutations = int(mutation_rate * length) # Total number of mutations is based on mutation rate
|
1607 |
-
# Decide the average span length; we assume mutation spans about 20% of the total mutations length
|
1608 |
-
average_span_length = random.randint(1, max(1, int(length * mutation_rate / 10)))
|
1609 |
-
# Initialize mutation points
|
1610 |
-
mutation_points = np.random.choice(length, num_mutations, replace=False) # Start points for mutations
|
1611 |
-
# Create the mask
|
1612 |
-
mask = np.zeros(length, dtype=bool)
|
1613 |
-
for start in mutation_points:
|
1614 |
-
end = start + average_span_length
|
1615 |
-
if end > length:
|
1616 |
-
end = length
|
1617 |
-
mask[start:end] = True # Masking a span from start to end
|
1618 |
-
# Apply mask
|
1619 |
-
sequence[mask] = "<mask>"
|
1620 |
-
# Combine the masked parts with the rest of the sequence
|
1621 |
-
mutated_sequence = ''.join(sequence)
|
1622 |
-
# Since multiple consecutive '<mask>'s might occur, replace them with a single '<mask>'
|
1623 |
-
mutated_sequence = mutated_sequence.replace('<mask>' * average_span_length, '<mask>')
|
1624 |
-
return mutated_sequence
|
1625 |
-
|
1626 |
-
# Initialize lists to store population data and inputs for masked language model
|
1627 |
-
mlm_inputs = []
|
1628 |
-
masked_sequences = []
|
1629 |
-
|
1630 |
-
# Iterate over the number of individuals in the population
|
1631 |
-
for sequence in population:
|
1632 |
-
# Create a sequence by randomly choosing nucleotides or a mask token for each position in the structure
|
1633 |
-
if random.random() < 1:
|
1634 |
-
masked_sequence = mutate(sequence, mutation_ratio)
|
1635 |
-
else:
|
1636 |
-
masked_sequence = mutate_with_spans_mask(sequence, mutation_ratio)
|
1637 |
-
masked_sequences.append(masked_sequence)
|
1638 |
-
mlm_inputs.append(f"{masked_sequence}<eos>{''.join(structure)}")
|
1639 |
-
|
1640 |
-
# Call a function to predict outputs using the masked language model
|
1641 |
-
outputs = self.mlm_predict(mlm_inputs, structure)
|
1642 |
-
|
1643 |
-
mut_population = []
|
1644 |
-
|
1645 |
-
# Decode the mlm outputs and construct the initial population
|
1646 |
-
for i in range(len(outputs)):
|
1647 |
-
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
1648 |
-
fixed_sequence = [
|
1649 |
-
x if x in "AGCT" else random.choice(["G", "C"])
|
1650 |
-
for x, y in zip(sequence, list(masked_sequences[i].replace('<mask>', '$')))
|
1651 |
-
]
|
1652 |
-
mut_population.append("".join(fixed_sequence))
|
1653 |
-
|
1654 |
-
return mut_population
|
1655 |
-
|
1656 |
-
def crossover(self, population, structure):
|
1657 |
-
crossover_population = []
|
1658 |
-
batch_crossover_inputs = []
|
1659 |
-
for i in range(len(population)):
|
1660 |
-
parent1, parent2 = random.choices(population, k=2)
|
1661 |
-
pos = random.randint(1, len(parent1) - 1)
|
1662 |
-
child1 = parent1[:pos] + "<mask>" * len(parent2[pos:])
|
1663 |
-
child2 = "<mask>" * len(parent1[:pos]) + parent2[pos:]
|
1664 |
-
batch_crossover_inputs.append(f"{child1}<eos>{structure}")
|
1665 |
-
batch_crossover_inputs.append(f"{child2}<eos>{structure}")
|
1666 |
-
|
1667 |
-
outputs = self.mlm_predict(batch_crossover_inputs, structure)
|
1668 |
-
|
1669 |
-
for i in range(len(outputs)):
|
1670 |
-
sequence = self.tokenizer.convert_ids_to_tokens(outputs[i].tolist())
|
1671 |
-
fixed_sequence = [
|
1672 |
-
x if x in "AGCT" else random.choice(["G", "C"])
|
1673 |
-
for x, y in zip(sequence, list(batch_crossover_inputs[i].replace('<mask>', '$')))
|
1674 |
-
]
|
1675 |
-
crossover_population.append("".join(fixed_sequence))
|
1676 |
-
|
1677 |
-
return crossover_population
|
1678 |
-
|
1679 |
-
def sequence_fitness(self, sequences, structure):
|
1680 |
-
fitness_values = []
|
1681 |
-
structures = [self.predict_structure(sequence) for sequence in sequences]
|
1682 |
-
for predicted_structure in structures:
|
1683 |
-
scores = []
|
1684 |
-
for i in range(len(predicted_structure)):
|
1685 |
-
if predicted_structure[i] == structure[i]:
|
1686 |
-
scores.append(1)
|
1687 |
-
elif (
|
1688 |
-
predicted_structure[i] == ")"
|
1689 |
-
and structure[i] == "("
|
1690 |
-
or predicted_structure[i] == "("
|
1691 |
-
and structure[i] == ")"
|
1692 |
-
):
|
1693 |
-
scores.append(-3)
|
1694 |
-
else:
|
1695 |
-
scores.append(0)
|
1696 |
-
score = 1 - sum(scores) / len(structure)
|
1697 |
-
fitness_values.append(score)
|
1698 |
-
return fitness_values
|
1699 |
-
|
1700 |
-
def mlm_predict(self, mlm_inputs, structure):
|
1701 |
-
batch_size = 4
|
1702 |
-
all_outputs = []
|
1703 |
-
from transformers import set_seed
|
1704 |
-
set_seed(random.randint(0, 99999999), deterministic=False)
|
1705 |
-
|
1706 |
-
with torch.no_grad():
|
1707 |
-
for i in range(0, len(mlm_inputs), batch_size):
|
1708 |
-
batch_mlm_inputs = self.tokenizer(
|
1709 |
-
mlm_inputs[i:i + batch_size],
|
1710 |
-
padding=True,
|
1711 |
-
max_length=len(mlm_inputs[0]) // 2,
|
1712 |
-
truncation=True,
|
1713 |
-
return_tensors="pt",
|
1714 |
-
)
|
1715 |
-
batch_mlm_inputs = batch_mlm_inputs.to(self.device)
|
1716 |
-
outputs = self.OmniGenome(**batch_mlm_inputs)[0]
|
1717 |
-
outputs = self.lm_head(outputs)
|
1718 |
-
outputs = outputs.argmax(dim=-1)
|
1719 |
-
all_outputs.append(outputs)
|
1720 |
-
outputs = torch.cat(all_outputs, dim=0)
|
1721 |
-
return outputs[:, 1:1 + len(structure)]
|
1722 |
-
|
1723 |
-
|
1724 |
-
# Copied from transformers.models.esm.modeling_esm.EsmClassificationHead with Esm->OmniGenome
|
1725 |
-
class OmniGenomeClassificationHead(nn.Module):
|
1726 |
-
"""Head for sentence-level classification tasks."""
|
1727 |
-
|
1728 |
-
def __init__(self, config):
|
1729 |
-
super().__init__()
|
1730 |
-
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1731 |
-
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1732 |
-
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1733 |
-
|
1734 |
-
def forward(self, features, **kwargs):
|
1735 |
-
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1736 |
-
x = self.dropout(x)
|
1737 |
-
x = self.dense(x)
|
1738 |
-
x = torch.tanh(x)
|
1739 |
-
x = self.dropout(x)
|
1740 |
-
x = self.out_proj(x)
|
1741 |
-
return x
|
1742 |
-
|
1743 |
-
|
1744 |
-
def create_position_ids_from_input_ids(
|
1745 |
-
input_ids, padding_idx, past_key_values_length=0
|
1746 |
-
):
|
1747 |
-
"""
|
1748 |
-
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1749 |
-
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1750 |
-
|
1751 |
-
Args:
|
1752 |
-
x: torch.Tensor x:
|
1753 |
-
|
1754 |
-
Returns: torch.Tensor
|
1755 |
-
"""
|
1756 |
-
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1757 |
-
mask = input_ids.ne(padding_idx).int()
|
1758 |
-
incremental_indices = (
|
1759 |
-
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
1760 |
-
) * mask
|
1761 |
-
return incremental_indices.long() + padding_idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|