Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ The model was trained with large amount of high quality data(over 10000000 image
|
|
13 |
during the training, including date augmentation, mutiple loss and multi resolution. Note that this model can achieve higher aesthetic performance than our Controlnet-Canny-Sdxl-1.0 model,
|
14 |
the model support any type of lines and any width of lines, the sketch can be very simple and so does the prompt. This model is more general and good at generate visual appealing images,
|
15 |
The control ability is also strong, for example if you are unstatisfied with some local regions about the generated image, draw a more precise sketch and give a detail prompt will help a lot.
|
16 |
-
**Note the model also support lineart or canny lines!!!**
|
17 |
|
18 |
|
19 |
## Model Details
|
@@ -44,4 +44,126 @@ The control ability is also strong, for example if you are unstatisfied with som
|
|
44 |
![image7](./000256_scribble_concat.webp)
|
45 |
![image8](./000271_scribble_concat.webp)
|
46 |
![image9](./000285_scribble_concat.webp)
|
47 |
-
![image10](./000290_scribble_concat.webp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
during the training, including date augmentation, mutiple loss and multi resolution. Note that this model can achieve higher aesthetic performance than our Controlnet-Canny-Sdxl-1.0 model,
|
14 |
the model support any type of lines and any width of lines, the sketch can be very simple and so does the prompt. This model is more general and good at generate visual appealing images,
|
15 |
The control ability is also strong, for example if you are unstatisfied with some local regions about the generated image, draw a more precise sketch and give a detail prompt will help a lot.
|
16 |
+
**Note the model also support lineart or canny lines, you can try it and will get a surpurise!!!**
|
17 |
|
18 |
|
19 |
## Model Details
|
|
|
44 |
![image7](./000256_scribble_concat.webp)
|
45 |
![image8](./000271_scribble_concat.webp)
|
46 |
![image9](./000285_scribble_concat.webp)
|
47 |
+
![image10](./000290_scribble_concat.webp)
|
48 |
+
|
49 |
+
|
50 |
+
## How to Get Started with the Model
|
51 |
+
|
52 |
+
Use the code below to get started with the model.
|
53 |
+
|
54 |
+
```python
|
55 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
56 |
+
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
57 |
+
from PIL import Image
|
58 |
+
import torch
|
59 |
+
import numpy as np
|
60 |
+
import cv2
|
61 |
+
|
62 |
+
def HWC3(x):
|
63 |
+
assert x.dtype == np.uint8
|
64 |
+
if x.ndim == 2:
|
65 |
+
x = x[:, :, None]
|
66 |
+
assert x.ndim == 3
|
67 |
+
H, W, C = x.shape
|
68 |
+
assert C == 1 or C == 3 or C == 4
|
69 |
+
if C == 3:
|
70 |
+
return x
|
71 |
+
if C == 1:
|
72 |
+
return np.concatenate([x, x, x], axis=2)
|
73 |
+
if C == 4:
|
74 |
+
color = x[:, :, 0:3].astype(np.float32)
|
75 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
76 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
77 |
+
y = y.clip(0, 255).astype(np.uint8)
|
78 |
+
return y
|
79 |
+
|
80 |
+
def nms(x, t, s):
|
81 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
82 |
+
|
83 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
84 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
85 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
86 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
87 |
+
|
88 |
+
y = np.zeros_like(x)
|
89 |
+
|
90 |
+
for f in [f1, f2, f3, f4]:
|
91 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
92 |
+
|
93 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
94 |
+
z[y > t] = 255
|
95 |
+
return z
|
96 |
+
|
97 |
+
|
98 |
+
controlnet_conditioning_scale = 1.0
|
99 |
+
prompt = "your prompt, the longer the better, you can describe it as detail as possible"
|
100 |
+
negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
101 |
+
|
102 |
+
|
103 |
+
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
|
104 |
+
|
105 |
+
|
106 |
+
controlnet = ControlNetModel.from_pretrained(
|
107 |
+
"xinsir/controlnet-scribble-sdxl-1.0",
|
108 |
+
torch_dtype=torch.float16
|
109 |
+
)
|
110 |
+
|
111 |
+
# when test with other base model, you need to change the vae also.
|
112 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
113 |
+
|
114 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
115 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
116 |
+
controlnet=controlnet,
|
117 |
+
vae=vae,
|
118 |
+
safety_checker=None,
|
119 |
+
torch_dtype=torch.float16,
|
120 |
+
scheduler=eulera_scheduler,
|
121 |
+
)
|
122 |
+
|
123 |
+
# you can use either hed to generate a fake scribble given an image or a sketch image totally draw by yourself
|
124 |
+
|
125 |
+
if random.random() > 0.5:
|
126 |
+
# Method 1
|
127 |
+
# if you use hed, you should provide an image, the image can be real or anime, you extract its hed lines and use it as the scribbles
|
128 |
+
# The detail about hed detect you can refer to https://github.com/lllyasviel/ControlNet/blob/main/gradio_fake_scribble2image.py
|
129 |
+
# I provide a pseudo-code here
|
130 |
+
# img = cv2.imread(img_path)
|
131 |
+
# hed_img = apply_hed(img)
|
132 |
+
# cv2.imwrite("a hed detect path for an image", hed_img)
|
133 |
+
|
134 |
+
controlnet_img = Image.open("a hed detect path for an image")
|
135 |
+
controlnet_img = np.array(controlnet_img)
|
136 |
+
controlnet_img = nms(controlnet_img, 127, 3)
|
137 |
+
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
138 |
+
|
139 |
+
# different threshold for different lines
|
140 |
+
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
141 |
+
controlnet_img[controlnet_img > random_val] = 255
|
142 |
+
controlnet_img[controlnet_img < 255] = 0
|
143 |
+
controlnet_img = Image.fromarray(controlnet_img)
|
144 |
+
|
145 |
+
else:
|
146 |
+
# Method 2
|
147 |
+
# if you use a sketch image total draw by yourself
|
148 |
+
control_path = "the sketch image you draw with some tools, like drawing board, the path you save it"
|
149 |
+
controlnet_img = Image.open(control_path) # Note that the image must be black-white(0 or 255), like the examples we list
|
150 |
+
|
151 |
+
# must resize to 1024*1024 or same resolution bucket to get the best performance
|
152 |
+
width, height = controlnet_img.size
|
153 |
+
ratio = np.sqrt(1024. * 1024. / (width * height))
|
154 |
+
new_width, new_height = int(width * ratio), int(height * ratio)
|
155 |
+
controlnet_img = controlnet_img.resize((new_width, new_height))
|
156 |
+
|
157 |
+
images = pipe(
|
158 |
+
prompt,
|
159 |
+
negative_prompt=negative_prompt,
|
160 |
+
image=controlnet_img,
|
161 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
162 |
+
width=new_width,
|
163 |
+
height=new_height,
|
164 |
+
num_inference_steps=30,
|
165 |
+
).images
|
166 |
+
|
167 |
+
images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger")
|
168 |
+
```
|
169 |
+
|