File size: 2,934 Bytes
e94d61e
4f35e29
9ddd378
 
e94d61e
4f35e29
e94d61e
9ddd378
e94d61e
 
9ddd378
e94d61e
 
 
9ddd378
e94d61e
 
 
 
 
9ddd378
 
e94d61e
 
 
 
 
 
4f35e29
e94d61e
 
4fcb288
 
e94d61e
9ddd378
e94d61e
9ddd378
4fcb288
4f35e29
 
9aefc3a
e94d61e
 
 
 
 
 
b43bcdc
e94d61e
 
 
 
 
 
 
 
 
 
4f35e29
 
257c7d5
e94d61e
4f35e29
e94d61e
 
b43bcdc
e94d61e
 
 
 
4f35e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e94d61e
 
 
 
4f35e29
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
language:
- eu
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Medium Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_17_0 eu
      type: mozilla-foundation/common_voice_17_0
      config: eu
      split: test
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 8.8020814247499
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Basque

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1787
- Wer: 8.8021

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3171        | 0.0625 | 500  | 0.3369          | 25.5304 |
| 0.1852        | 0.125  | 1000 | 0.2409          | 17.3110 |
| 0.2353        | 0.1875 | 1500 | 0.2050          | 14.2228 |
| 0.1569        | 1.037  | 2000 | 0.1815          | 12.2861 |
| 0.125         | 1.0995 | 2500 | 0.1692          | 11.1144 |
| 0.12          | 1.162  | 3000 | 0.1600          | 10.6975 |
| 0.069         | 2.0115 | 3500 | 0.1540          | 9.7649  |
| 0.0606        | 2.074  | 4000 | 0.1550          | 9.8199  |
| 0.0434        | 2.1365 | 4500 | 0.1580          | 9.4571  |
| 0.0455        | 2.199  | 5000 | 0.1533          | 9.1410  |
| 0.0216        | 3.0485 | 5500 | 0.1620          | 9.0842  |
| 0.017         | 3.111  | 6000 | 0.1704          | 9.0980  |
| 0.0174        | 3.1735 | 6500 | 0.1681          | 9.0723  |
| 0.0098        | 4.023  | 7000 | 0.1725          | 8.8625  |
| 0.0076        | 4.0855 | 7500 | 0.1765          | 8.8351  |
| 0.007         | 4.148  | 8000 | 0.1787          | 8.8021  |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.2.dev0
- Tokenizers 0.20.0