Text Generation
Transformers
Safetensors
llama
code
conversational
Eval Results
text-generation-inference
Inference Endpoints
File size: 7,094 Bytes
b1889e7
 
4128293
 
b1889e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388f222
 
 
 
b1889e7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
license: other
license_name: deepseek
license_link: LICENSE
datasets:
- wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K
- ise-uiuc/Magicoder-Evol-Instruct-110K
library_name: transformers
pipeline_tag: text-generation
tags:
- code
model-index:
- name: InverseCoder-DS-6.7B
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.799
      verified: false
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval(+)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.768
      verified: false
  - task:
      type: text-generation
    dataset:
      type: mbpp
      name: MBPP
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.786
      verified: false
  - task:
      type: text-generation
    dataset:
      type: mbpp
      name: MBPP(+)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.690
      verified: false
  - task:
      type: text-generation
    dataset:
      type: ds1000
      name: DS-1000 (Overall Completion)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.442
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.607
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.701
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.705
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.636
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Swift)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.530
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.574
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Average for non-python languages)
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.626
      verified: false
---
<div align="center">
  <img src="https://huggingface.co/wyt2000/InverseCoder-CL-7B/resolve/main/assets/logo.png" style="zoom:25%;" /> 
</div>

# InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct

<img src="https://huggingface.co/wyt2000/InverseCoder-CL-7B/resolve/main/assets/overview.png" style="zoom:50%;" /> 

InverseCoder is a series of code LLMs instruction-tuned by generating data from itself through Inverse-Instruct.

## Models and Datasets
|     | Base Model                                                                                           | InverseCoder                                                                                      | Dataset                                                                                                                              |
| --- | ---------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------ |
| 6.7B | [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) | [wyt2000/InverseCoder-DS-6.7B](https://huggingface.co/wyt2000/InverseCoder-DS-6.7B) **<= You are here** | [wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-DS-6.7B-Evol-Instruct-90K)     |
| 7B  | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf)          | [wyt2000/InverseCoder-CL-7B](https://huggingface.co/wyt2000/InverseCoder-CL-7B)   | [wyt2000/InverseCoder-CL-7B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-CL-7B-Evol-Instruct-90K)       |
| 13B  | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf)          | [wyt2000/InverseCoder-CL-13B](https://huggingface.co/wyt2000/InverseCoder-CL-13B)  | [wyt2000/InverseCoder-CL-13B-Evol-Instruct-90K](https://huggingface.co/datasets/wyt2000/InverseCoder-CL-13B-Evol-Instruct-90K)       |

## Usage

Similar to [Magicoder-S-DS-6.7B](https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B/), use the code below to get started with the model. Make sure you installed the [transformers](https://huggingface.co/docs/transformers/index) library.

```python
from transformers import pipeline
import torch
INVERSECODER_PROMPT = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
@@ Instruction
{instruction}
@@ Response
"""
instruction = <Your code instruction here>
prompt = INVERSECODER_PROMPT.format(instruction=instruction)
generator = pipeline(
    model="wyt2000/InverseCoder-DS-6.7B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
result = generator(prompt, max_length=1024, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])
```

## Paper
**Arxiv:** <https://arxiv.org/abs/2407.05700>

Please cite the paper if you use the models or datasets from InverseCoder.

```
@misc{wu2024inversecoderunleashingpowerinstructiontuned,
      title={InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct}, 
      author={Yutong Wu and Di Huang and Wenxuan Shi and Wei Wang and Lingzhe Gao and Shihao Liu and Ziyuan Nan and Kaizhao Yuan and Rui Zhang and Xishan Zhang and Zidong Du and Qi Guo and Yewen Pu and Dawei Yin and Xing Hu and Yunji Chen},
      year={2024},
      eprint={2407.05700},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2407.05700}, 
}
```

## Code

[Official code repo](https://github.com/wyt2000/InverseCoder) for Inverse-Instruct (under development).

## Acknowledgements

* [Magicoder](https://github.com/ise-uiuc/magicoder): Training code, original datasets and data decontamination
* [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder): Base model for InverseCoder-DS
* [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/): Base model for InverseCoder-CL
* [AutoMathText](https://github.com/yifanzhang-pro/AutoMathText): Self-evaluation and data selection method