|
import os |
|
|
|
import torch |
|
from torchaudio import transforms |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.utils.hub import cached_file |
|
|
|
|
|
def init_layer(layer): |
|
"""Initialize a Linear or Convolutional layer. """ |
|
nn.init.xavier_uniform_(layer.weight) |
|
|
|
if hasattr(layer, 'bias'): |
|
if layer.bias is not None: |
|
layer.bias.data.fill_(0.) |
|
|
|
def init_bn(bn): |
|
"""Initialize a Batchnorm layer. """ |
|
bn.bias.data.fill_(0.) |
|
bn.weight.data.fill_(1.) |
|
|
|
def interpolate(x, ratio): |
|
"""Interpolate data in time domain. This is used to compensate the |
|
resolution reduction in downsampling of a CNN. |
|
|
|
Args: |
|
x: (batch_size, time_steps, classes_num) |
|
ratio: int, ratio to interpolate |
|
|
|
Returns: |
|
upsampled: (batch_size, time_steps * ratio, classes_num) |
|
""" |
|
(batch_size, time_steps, classes_num) = x.shape |
|
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) |
|
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) |
|
return upsampled |
|
|
|
def pad_framewise_output(framewise_output, frames_num): |
|
"""Pad framewise_output to the same length as input frames. The pad value |
|
is the same as the value of the last frame. |
|
|
|
Args: |
|
framewise_output: (batch_size, frames_num, classes_num) |
|
frames_num: int, number of frames to pad |
|
|
|
Outputs: |
|
output: (batch_size, frames_num, classes_num) |
|
""" |
|
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1) |
|
"""tensor for padding""" |
|
|
|
output = torch.cat((framewise_output, pad), dim=1) |
|
"""(batch_size, frames_num, classes_num)""" |
|
|
|
return output |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
|
|
super(ConvBlock, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), stride=(1, 1), |
|
padding=(1, 1), bias=False) |
|
|
|
self.conv2 = nn.Conv2d(in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=(3, 3), stride=(1, 1), |
|
padding=(1, 1), bias=False) |
|
|
|
self.bn1 = nn.BatchNorm2d(out_channels) |
|
self.bn2 = nn.BatchNorm2d(out_channels) |
|
|
|
self.init_weight() |
|
|
|
def init_weight(self): |
|
init_layer(self.conv1) |
|
init_layer(self.conv2) |
|
init_bn(self.bn1) |
|
init_bn(self.bn2) |
|
|
|
|
|
def forward(self, input, pool_size=(2, 2), pool_type='avg'): |
|
|
|
x = input |
|
x = F.relu_(self.bn1(self.conv1(x))) |
|
x = F.relu_(self.bn2(self.conv2(x))) |
|
if pool_type == 'max': |
|
x = F.max_pool2d(x, kernel_size=pool_size) |
|
elif pool_type == 'avg': |
|
x = F.avg_pool2d(x, kernel_size=pool_size) |
|
elif pool_type == 'avg+max': |
|
x1 = F.avg_pool2d(x, kernel_size=pool_size) |
|
x2 = F.max_pool2d(x, kernel_size=pool_size) |
|
x = x1 + x2 |
|
else: |
|
raise Exception('Incorrect argument!') |
|
|
|
return x |
|
|
|
|
|
class LinearSoftmax(nn.Module): |
|
def __init__(self, pooldim=1): |
|
super().__init__() |
|
self.pooldim = pooldim |
|
|
|
def forward(self, time_decision): |
|
return (time_decision**2).sum(self.pooldim) / time_decision.sum( |
|
self.pooldim) |
|
|
|
|
|
class Cnn8RnnConfig(PretrainedConfig): |
|
|
|
def __init__( |
|
self, |
|
classes_num: int = 447, |
|
sample_rate: int = 32000, |
|
**kwargs |
|
): |
|
self.classes_num = classes_num |
|
self.sample_rate = sample_rate |
|
super().__init__(**kwargs) |
|
|
|
|
|
class Cnn8RnnSoundEventDetection(PreTrainedModel): |
|
|
|
config_class = Cnn8RnnConfig |
|
|
|
def __init__(self, config: Cnn8RnnConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.time_resolution = 0.01 |
|
self.interpolate_ratio = 4 |
|
|
|
|
|
self.melspec_extractor = transforms.MelSpectrogram( |
|
sample_rate=config.sample_rate, |
|
n_fft=1024, |
|
win_length=1024, |
|
hop_length=320, |
|
f_min=50, |
|
f_max=14000, |
|
n_mels=64, |
|
norm="slaney", |
|
mel_scale="slaney" |
|
) |
|
self.db_transform = transforms.AmplitudeToDB() |
|
|
|
self.bn0 = nn.BatchNorm2d(64) |
|
|
|
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64) |
|
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128) |
|
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256) |
|
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512) |
|
|
|
self.fc1 = nn.Linear(512, 512, bias=True) |
|
self.rnn = nn.GRU(512, 256, bidirectional=True, batch_first=True) |
|
self.fc_audioset = nn.Linear(512, config.classes_num, bias=True) |
|
self.temporal_pooling = LinearSoftmax() |
|
|
|
self.init_weight() |
|
|
|
def init_weight(self): |
|
init_bn(self.bn0) |
|
init_layer(self.fc1) |
|
init_layer(self.fc_audioset) |
|
|
|
def forward(self, waveform): |
|
x = self.melspec_extractor(waveform) |
|
x = self.db_transform(x) |
|
x = x.transpose(1, 2) |
|
x = x.unsqueeze(1) |
|
|
|
frames_num = x.shape[2] |
|
|
|
x = x.transpose(1, 3) |
|
x = self.bn0(x) |
|
x = x.transpose(1, 3) |
|
|
|
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg+max') |
|
x = F.dropout(x, p=0.2, training=self.training) |
|
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg+max') |
|
x = F.dropout(x, p=0.2, training=self.training) |
|
x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg+max') |
|
x = F.dropout(x, p=0.2, training=self.training) |
|
x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg+max') |
|
x = F.dropout(x, p=0.2, training=self.training) |
|
x = torch.mean(x, dim=3) |
|
|
|
x = x.transpose(1, 2) |
|
x = F.dropout(x, p=0.5, training=self.training) |
|
x = F.relu_(self.fc1(x)) |
|
x, _ = self.rnn(x) |
|
segmentwise_output = torch.sigmoid(self.fc_audioset(x)).clamp(1e-7, 1.) |
|
clipwise_output = self.temporal_pooling(segmentwise_output) |
|
|
|
|
|
framewise_output = interpolate(segmentwise_output, |
|
self.interpolate_ratio) |
|
framewise_output = pad_framewise_output(framewise_output, frames_num) |
|
|
|
output_dict = { |
|
'framewise_output': framewise_output, |
|
'clipwise_output': clipwise_output |
|
} |
|
|
|
return output_dict |
|
|
|
|
|
def save_pretrained(self, save_directory, *args, **kwargs): |
|
super().save_pretrained(save_directory, *args, **kwargs) |
|
with open(os.path.join(save_directory, "classes.txt"), "w") as f: |
|
for class_name in self.classes: |
|
f.write(class_name + "\n") |
|
|
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, |
|
**kwargs): |
|
model = super().from_pretrained(pretrained_model_name_or_path, |
|
*model_args, **kwargs) |
|
class_file = cached_file(pretrained_model_name_or_path, "classes.txt") |
|
with open(class_file, "r") as f: |
|
model.classes = [l.strip() for l in f] |
|
return model |
|
|