--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.908256880733945 --- # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4493 - Accuracy: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1804 | 1.0 | 2105 | 0.2843 | 0.9025 | | 0.1216 | 2.0 | 4210 | 0.3242 | 0.9025 | | 0.0871 | 3.0 | 6315 | 0.3320 | 0.9060 | | 0.0607 | 4.0 | 8420 | 0.3913 | 0.9025 | | 0.0429 | 5.0 | 10525 | 0.4493 | 0.9083 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0.dev20220409+cu115 - Datasets 2.0.0 - Tokenizers 0.12.0