File size: 1,668 Bytes
fd7f43e
 
281f29e
fd7f43e
 
 
 
 
 
7247ce5
fd7f43e
 
 
 
 
 
 
7247ce5
fd7f43e
2731464
 
fd7f43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731464
 
fd7f43e
 
 
 
 
 
 
1f0712a
 
2731464
 
 
 
 
fd7f43e
 
 
 
1ff172f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-sst2

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2823
- Accuracy: 0.9083

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 132  | 0.2514          | 0.9002   |
| No log        | 2.0   | 264  | 0.2852          | 0.8911   |
| No log        | 3.0   | 396  | 0.2823          | 0.9083   |
| 0.1928        | 4.0   | 528  | 0.2995          | 0.9025   |
| 0.1928        | 5.0   | 660  | 0.3086          | 0.9014   |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1