--- tags: - tabular-classification - sklearn datasets: - wine-quality - lvwerra/red-wine widget: structuredData: fixed_acidity: - 7.4 - 7.8 - 10.3 volatile_acidity: - 0.7 - 0.88 - 0.32 citric_acid: - 0 - 0 - 0.45 residual_sugar: - 1.9 - 2.6 - 6.4 chlorides: - 0.076 - 0.098 - 0.073 free_sulfur_dioxide: - 11 - 25 - 5 total_sulfur_dioxide: - 34 - 67 - 13 density: - 0.9978 - 0.9968 - 0.9976 pH: - 3.51 - 3.2 - 3.23 sulphates: - 0.56 - 0.68 - 0.82 alcohol: - 9.4 - 9.8 - 12.6 library_name: sklearn pipeline_tag: tabular-classification --- ## Wine Quality classification ### A Simple Example of Scikit-learn Pipeline > Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd REPO_ID = "julien-c/wine-quality" FILENAME = "sklearn_model.joblib" model = joblib.load(cached_download( hf_hub_url(REPO_ID, FILENAME) )) # model is a `sklearn.pipeline.Pipeline` ``` #### Get sample data from this repo ```python data_file = cached_download( hf_hub_url(REPO_ID, "winequality-red.csv") ) winedf = pd.read_csv(data_file, sep=";") X = winedf.drop(["quality"], axis=1) Y = winedf["quality"] print(X[:3]) ``` | | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol | |---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:| | 0 | 7.4 | 0.7 | 0 | 1.9 | 0.076 | 11 | 34 | 0.9978 | 3.51 | 0.56 | 9.4 | | 1 | 7.8 | 0.88 | 0 | 2.6 | 0.098 | 25 | 67 | 0.9968 | 3.2 | 0.68 | 9.8 | | 2 | 7.8 | 0.76 | 0.04 | 2.3 | 0.092 | 15 | 54 | 0.997 | 3.26 | 0.65 | 9.8 | #### Get your prediction ```python labels = model.predict(X[:3]) # [5, 5, 5] ``` #### Eval ```python model.score(X, Y) # 0.6616635397123202 ``` ### 🍷 Disclaimer No red wine was drunk (unfortunately) while training this model 🍷