ColPali
Safetensors
English
vidore
manu commited on
Commit
a3dc421
1 Parent(s): ebc5a00

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -2
README.md CHANGED
@@ -36,9 +36,76 @@ with `alpha=32` and `r=32` on the transformer layers from the language model,
36
  as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
37
  We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
38
 
39
- ## Intended uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- #TODO
42
 
43
  ## Limitations
44
 
 
36
  as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
37
  We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
38
 
39
+ ## Usage
40
+
41
+ An example usa
42
+
43
+ ```python
44
+ import torch
45
+ import typer
46
+ from torch.utils.data import DataLoader
47
+ from tqdm import tqdm
48
+ from transformers import AutoProcessor
49
+ from PIL import Image
50
+
51
+ from colpali_engine.models.paligemma_colbert_architecture import ColPali
52
+ from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
53
+ from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
54
+ from colpali_engine.utils.image_from_page_utils import load_from_dataset
55
+
56
+
57
+ def main() -> None:
58
+ """Example script to run inference with ColPali"""
59
+
60
+ # Load model
61
+ model_name = "vidore/colpali"
62
+ model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
63
+ model.load_adapter(model_name)
64
+ processor = AutoProcessor.from_pretrained(model_name)
65
+
66
+ # select images -> load_from_pdf(<pdf_path>), load_from_image_urls(["<url_1>"]), load_from_dataset(<path>)
67
+ images = load_from_dataset("vidore/docvqa_test_subsampled")
68
+ queries = ["From which university does James V. Fiorca come ?", "Who is the japanese prime minister?"]
69
+
70
+ # run inference - docs
71
+ dataloader = DataLoader(
72
+ images,
73
+ batch_size=4,
74
+ shuffle=False,
75
+ collate_fn=lambda x: process_images(processor, x),
76
+ )
77
+ ds = []
78
+ for batch_doc in tqdm(dataloader):
79
+ with torch.no_grad():
80
+ batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
81
+ embeddings_doc = model(**batch_doc)
82
+ ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
83
+
84
+ # run inference - queries
85
+ dataloader = DataLoader(
86
+ queries,
87
+ batch_size=4,
88
+ shuffle=False,
89
+ collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
90
+ )
91
+
92
+ qs = []
93
+ for batch_query in dataloader:
94
+ with torch.no_grad():
95
+ batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
96
+ embeddings_query = model(**batch_query)
97
+ qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
98
+
99
+ # run evaluation
100
+ retriever_evaluator = CustomEvaluator(is_multi_vector=True)
101
+ scores = retriever_evaluator.evaluate(qs, ds)
102
+ print(scores.argmax(axis=1))
103
+
104
+
105
+ if __name__ == "__main__":
106
+ typer.run(main)
107
 
108
+ ```
109
 
110
  ## Limitations
111