--- base_model: LeroyDyer/LCARS_AI_DeepMind datasets: - gretelai/synthetic_text_to_sql - HuggingFaceTB/cosmopedia - teknium/OpenHermes-2.5 - Open-Orca/SlimOrca - Open-Orca/OpenOrca - cognitivecomputations/dolphin-coder - databricks/databricks-dolly-15k - yahma/alpaca-cleaned - uonlp/CulturaX - mwitiderrick/SwahiliPlatypus - swahili - Rogendo/English-Swahili-Sentence-Pairs - ise-uiuc/Magicoder-Evol-Instruct-110K - meta-math/MetaMathQA - abacusai/ARC_DPO_FewShot - abacusai/MetaMath_DPO_FewShot - abacusai/HellaSwag_DPO_FewShot - HaltiaAI/Her-The-Movie-Samantha-and-Theodore-Dataset - gretelai/synthetic_text_to_sql - HuggingFaceTB/cosmopedia - teknium/OpenHermes-2.5 - cognitivecomputations/dolphin-coder - databricks/databricks-dolly-15k - yahma/alpaca-cleaned - uonlp/CulturaX - mwitiderrick/SwahiliPlatypus - swahili - Rogendo/English-Swahili-Sentence-Pairs - ise-uiuc/Magicoder-Evol-Instruct-110K - meta-math/MetaMathQA language: - en license: apache-2.0 metrics: - accuracy - bertscore - bleu - brier_score - cer - character - charcut_mt - chrf - code_eval tags: - text-generation-inference - transformers - leaderboard - mistral - trl - llama-cpp - gguf-my-repo y-Gene: - LeroyDyer/Mixtral_AI_DeepMind - LeroyDyer/Mixtral_AI_CyberUltron_DPO - LeroyDyer/Mixtral_AI_Chat_2.0 - LeroyDyer/Mixtral_AI_DeepMedicalMind - LeroyDyer/Mixtral_AI_Samantha x-Gene: - LeroyDyer/Mixtral_AI_Chat_2.0 - LeroyDyer/Mixtral_BioMedical - LeroyDyer/Mixtral_AI_Medic - LeroyDyer/Mixtral_Cyber_BioMedic - LeroyDyer/Mixtral_AI_DeepMedicalMind Variant: - LeroyDyer/MetaMath_LLM - LeroyDyer/TruthfulQA_LLM - LeroyDyer/HellaSwag_LLM - LeroyDyer/Mixtral_AI_DeepMedicalMind model-index: - name: Mixtral_AI_CyberTron_DeepMind_III_UFT results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.86 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.15 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 49.41 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 51.86 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT name: Open LLM Leaderboard --- # victorbur/LCARS_AI_DeepMind-Q5_K_M-GGUF This model was converted to GGUF format from [`LeroyDyer/LCARS_AI_DeepMind`](https://huggingface.co/LeroyDyer/LCARS_AI_DeepMind) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/LeroyDyer/LCARS_AI_DeepMind) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo victorbur/LCARS_AI_DeepMind-Q5_K_M-GGUF --hf-file lcars_ai_deepmind-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo victorbur/LCARS_AI_DeepMind-Q5_K_M-GGUF --hf-file lcars_ai_deepmind-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo victorbur/LCARS_AI_DeepMind-Q5_K_M-GGUF --hf-file lcars_ai_deepmind-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo victorbur/LCARS_AI_DeepMind-Q5_K_M-GGUF --hf-file lcars_ai_deepmind-q5_k_m.gguf -c 2048 ```