Upload train_human.py
Browse files- train_human.py +146 -0
train_human.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
from datasets import load_dataset, Dataset
|
5 |
+
|
6 |
+
from trl import DPOTrainer, DPOConfig
|
7 |
+
from peft import LoraConfig
|
8 |
+
from peft import prepare_model_for_kbit_training
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
# %%
|
14 |
+
dataset = load_dataset("Undi95/Weyaxi-humanish-dpo-project-noemoji")["train"]
|
15 |
+
|
16 |
+
model_name = "Undi95/Meta-Llama-3.1-8B-Claude-bf16"
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
tokenizer.padding_side = "right"
|
20 |
+
|
21 |
+
tokenizer.pad_token = tokenizer.eos_token
|
22 |
+
|
23 |
+
# %%
|
24 |
+
tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}"
|
25 |
+
|
26 |
+
|
27 |
+
# %%
|
28 |
+
dataset2 = load_dataset("ResplendentAI/NSFW_RP_Format_DPO")['train']
|
29 |
+
|
30 |
+
# %%
|
31 |
+
dataset = dataset.to_pandas(
|
32 |
+
)
|
33 |
+
dataset2 = dataset2.to_pandas()
|
34 |
+
|
35 |
+
dataset = Dataset.from_pandas(pd.concat([dataset.sample(400), dataset2]).sample(frac=1))
|
36 |
+
|
37 |
+
# %%
|
38 |
+
def template_prompt(system, prompt):
|
39 |
+
if system is None:
|
40 |
+
messages = [
|
41 |
+
{"role": "user", "content": prompt},
|
42 |
+
]
|
43 |
+
else:
|
44 |
+
messages = [
|
45 |
+
{
|
46 |
+
"role": "system",
|
47 |
+
"content": system,
|
48 |
+
},
|
49 |
+
{"role": "user", "content": prompt},
|
50 |
+
]
|
51 |
+
prompt = tokenizer.apply_chat_template(
|
52 |
+
messages, tokenize=False, add_generation_prompt=False
|
53 |
+
)
|
54 |
+
return prompt
|
55 |
+
|
56 |
+
|
57 |
+
def template_answer(answer):
|
58 |
+
messages = [
|
59 |
+
{
|
60 |
+
"role": "assistant",
|
61 |
+
"content": answer,
|
62 |
+
},
|
63 |
+
]
|
64 |
+
answer = tokenizer.apply_chat_template(
|
65 |
+
messages, tokenize=False, add_generation_prompt=False
|
66 |
+
)
|
67 |
+
return answer
|
68 |
+
|
69 |
+
# %%
|
70 |
+
# create new columns
|
71 |
+
dataset = dataset.map(
|
72 |
+
lambda x: {
|
73 |
+
"prompt": template_prompt(None, x["prompt"]).replace("<|start_header_id|>assistant<|end_header_id|>\n\n", "")
|
74 |
+
}, # change this according to the dataset!!!
|
75 |
+
)
|
76 |
+
|
77 |
+
# %%
|
78 |
+
dataset = dataset.map(
|
79 |
+
lambda x: {"chosen": template_answer(x["chosen"]).replace('<|begin_of_text|>', '').replace('><|start_header_id|>assistant<|end_header_id|>\n\n', '>')},
|
80 |
+
)
|
81 |
+
dataset = dataset.map(
|
82 |
+
lambda x: {"rejected": template_answer(x["rejected"]).replace('<|begin_of_text|>', '').replace('><|start_header_id|>assistant<|end_header_id|>\n\n', '>')},
|
83 |
+
)
|
84 |
+
|
85 |
+
# %%
|
86 |
+
dataset[0]
|
87 |
+
|
88 |
+
# %%
|
89 |
+
# LoRA configuration
|
90 |
+
peft_config = LoraConfig(
|
91 |
+
r=16,
|
92 |
+
lora_alpha=32,
|
93 |
+
lora_dropout=0.05,
|
94 |
+
bias="none",
|
95 |
+
task_type="CAUSAL_LM",
|
96 |
+
target_modules=[
|
97 |
+
"k_proj",
|
98 |
+
"gate_proj",
|
99 |
+
"v_proj",
|
100 |
+
"up_proj",
|
101 |
+
"q_proj",
|
102 |
+
"o_proj",
|
103 |
+
"down_proj",
|
104 |
+
],
|
105 |
+
)
|
106 |
+
|
107 |
+
# Model to fine-tune
|
108 |
+
model = AutoModelForCausalLM.from_pretrained(
|
109 |
+
model_name,
|
110 |
+
torch_dtype=torch.float16,
|
111 |
+
load_in_4bit=True,
|
112 |
+
device_map="auto",
|
113 |
+
)
|
114 |
+
model.config.use_cache = False
|
115 |
+
|
116 |
+
|
117 |
+
model.gradient_checkpointing_enable()
|
118 |
+
model = prepare_model_for_kbit_training(model)
|
119 |
+
|
120 |
+
# %%
|
121 |
+
output_name = f"checkpoints/exp_human_{model_name}"
|
122 |
+
|
123 |
+
training_args = DPOConfig(
|
124 |
+
per_device_train_batch_size=1,
|
125 |
+
gradient_accumulation_steps=4,
|
126 |
+
num_train_epochs=1,
|
127 |
+
gradient_checkpointing=True,
|
128 |
+
output_dir=output_name,
|
129 |
+
logging_steps=1,
|
130 |
+
max_steps=50
|
131 |
+
)
|
132 |
+
|
133 |
+
trainer = DPOTrainer(
|
134 |
+
model,
|
135 |
+
ref_model=None,
|
136 |
+
train_dataset=dataset,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
args=training_args,
|
139 |
+
peft_config=peft_config,
|
140 |
+
)
|
141 |
+
|
142 |
+
trainer.train()
|
143 |
+
|
144 |
+
trainer.save_model(output_name)
|
145 |
+
|
146 |
+
|