File size: 8,912 Bytes
2f760fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
from text_to_video import model_t2v_fun,setup_seed
from omegaconf import OmegaConf
import torch
import imageio
import os
import cv2
import pandas as pd
import torchvision
import random
from huggingface_hub import snapshot_download

config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
### download models
# snapshot_download('Vchitect/LaVie',cache_dir='./pretrained_models')
# snapshot_download('CompVis/stable-diffusion-v1-4',cache_dir='./pretrained_models')

# ------- get model ---------------
model_t2V = model_t2v_fun(args)
model_t2V.to(device)
if device == "cuda":
    model_t2V.enable_xformers_memory_efficient_attention()

# model_t2V.enable_xformers_memory_efficient_attention()
css = """
h1 {
  text-align: center;
}
#component-0 {
  max-width: 730px;
  margin: auto;
}
"""

def infer(prompt, seed_inp, ddim_steps,cfg):
    if seed_inp!=-1:
        setup_seed(seed_inp)
    else:
        seed_inp = random.choice(range(10000000))
        setup_seed(seed_inp)
    videos = model_t2V(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
    print(videos[0].shape)
    if not os.path.exists(args.output_folder):
        os.mkdir(args.output_folder)
    torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
    # imageio.mimwrite(args.output_folder + prompt.replace(' ', '_') + '.mp4', videos[0], fps=8)
    # video = cv2.VideoCapture(args.output_folder + prompt.replace(' ', '_') + '.mp4')
    # video = imageio.get_reader(args.output_folder + prompt.replace(' ', '_') + '.mp4',  'ffmpeg')


    # video = model_t2V(prompt, seed_inp, ddim_steps)

    return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'

print(1)

# def clean():
#     return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
def clean():
    return gr.Video.update(value=None)

title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Intern·Vchitect (Text-to-Video)
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Apply Intern·Vchitect to generate a video 
        </p>
    </div>
"""

# print(1)
with gr.Blocks(css='style.css') as demo:
    gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
    with gr.Column():
        with gr.Row(elem_id="col-container"):
            # inputs = [prompt, seed_inp, ddim_steps]
            # outputs = [video_out]
            with gr.Column():
                    
                prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
                
                ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
                seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
                cfg = gr.Number(label="guidance_scale",value=7.5)
                # seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in")

                # with gr.Row():
                #     # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
                #     ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
                #     seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
                
                # ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
                # ex = gr.Examples(
                #     examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
                #             ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
                #             ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
                #             ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
                #             ['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
                #             ['a teddy bear walking on the street, 2k, high quality',100,50,7],
                #             ['a panda taking a selfie, 2k, high quality',400,50,7],
                #             ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
                #             ['jungle river at sunset, ultra quality',400,50,7],
                #             ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
                #             ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
                #             ['a confused grizzly bear in calculus class',1000,50,7]],
                #     fn = infer,
                #     inputs=[prompt, seed_inp, ddim_steps,cfg],
                #     # outputs=[video_out],
                #     cache_examples=False,
                #     examples_per_page = 6
                # )
                # ex.dataset.headers = [""]

            with gr.Column():
                submit_btn = gr.Button("Generate video")
                clean_btn = gr.Button("Clean video")
            # submit_btn = gr.Button("Generate video", size='sm')
                # video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
                video_out = gr.Video(label="Video result", elem_id="video-output")
            # with gr.Row():
            #     video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
            #     submit_btn = gr.Button("Generate video", size='sm')
            

                # video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
            inputs = [prompt, seed_inp, ddim_steps,cfg]
            outputs = [video_out]
        # gr.Examples(
        #     value = [['An astronaut riding a horse',123,50],
        #              ['a panda eating bamboo on a rock',123,50],
        #              ['Spiderman is surfing',123,50]],
        #     label = "example of sampling",
        #     show_label = True,
        #     headers = ['prompt','seed','steps'],
        #     datatype = ['str','number','number'],
        #     row_count=4,
        #     col_count=(3,"fixed")
        # )
        ex = gr.Examples(
            examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
                    ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
                    ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
                    ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
                    ['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
                    ['a teddy bear walking on the street, 2k, high quality',100,50,7],
                    ['a panda taking a selfie, 2k, high quality',400,50,7],
                    ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
                    ['jungle river at sunset, ultra quality',400,50,7],
                    ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
                    ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
                    ['a confused grizzly bear in calculus class',1000,50,7]],
            fn = infer,
            inputs=[prompt, seed_inp, ddim_steps,cfg],
            outputs=[video_out],
            cache_examples=False,
        )
        ex.dataset.headers = [""]
        
    # control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
    # submit_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
    clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
    submit_btn.click(infer, inputs, outputs)
    # share_button.click(None, [], [], _js=share_js)

    print(2)
demo.queue(max_size=12).launch()