--- language: - en library_name: transformers pipeline_tag: text-generation datasets: - yahma/alpaca-cleaned license: apache-2.0 ---

speechless-mistral-moloras-7b

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GGUF) [4-bit GGUF models for CPU+GPU inference](https://huggingface.co/uukuguy/speechless-mistral-moloras-7b/tree/main/GGUF) This model is the static version of moloras (Mixture-of-multi-LoRAs) based on the following 6 Mistral-based LoRa modules. - Intel/neural-chat-7b-v3-1 - migtissera/SynthIA-7B-v1.3 - jondurbin/airoboros-m-7b-3.1.2 - bhenrym14/mistral-7b-platypus-fp16 - teknium/CollectiveCognition-v1.1-Mistral-7B - uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b Totally 6 LoRA modules from [speechless-mistral-7b-dare-0.85](https://huggingface.co/speechlessai/speechless-mistral-7b-dare-0.85) The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. Code: https://github.com/uukuguy/multi_loras?tab=readme-ov-file#mixture-of-multi-loras ## LM-Evaluation-Harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | 59.98 | | HellaSwag | 83.29 | | MMLU | 64.12 | | TruthfulQA | 42.15 | | Winogrande | 78.37 | | GSM8K | 37.68 | | Average | 60.93 |