shimmyshimmer
commited on
Commit
•
22b385f
1
Parent(s):
af264c9
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
3 |
+
datasets:
|
4 |
+
- nvidia/HelpSteer2
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
license: llama3.1
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
tags:
|
11 |
+
- nvidia
|
12 |
+
- llama3.1
|
13 |
+
- unsloth
|
14 |
+
- llama
|
15 |
+
---
|
16 |
+
|
17 |
+
# Finetune Llama 3.2, NVIDIA Nemotron, Mistral 2-5x faster with 70% less memory via Unsloth!
|
18 |
+
|
19 |
+
We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
|
20 |
+
|
21 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
22 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
23 |
+
|
24 |
+
# unsloth/Llama-3.1-Nemotron-70B-Instruct-GGUF
|
25 |
+
For more details on the model, please go to NVIDIA's original [model card](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF)
|
26 |
+
|
27 |
+
## ✨ Finetune for Free
|
28 |
+
|
29 |
+
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
|
30 |
+
|
31 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
32 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
33 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
|
34 |
+
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
|
35 |
+
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
|
36 |
+
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
|
37 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
|
38 |
+
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
|
39 |
+
|
40 |
+
- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
|
41 |
+
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
42 |
+
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
43 |
+
|
44 |
+
## Special Thanks
|
45 |
+
A huge thank you to the Meta and Llama team for creating these models and for NVIDIA fine-tuning them and releasing them.
|