shimmyshimmer commited on
Commit
22b385f
1 Parent(s): af264c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -3
README.md CHANGED
@@ -1,3 +1,45 @@
1
- ---
2
- license: llama3.1
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
3
+ datasets:
4
+ - nvidia/HelpSteer2
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: llama3.1
9
+ pipeline_tag: text-generation
10
+ tags:
11
+ - nvidia
12
+ - llama3.1
13
+ - unsloth
14
+ - llama
15
+ ---
16
+
17
+ # Finetune Llama 3.2, NVIDIA Nemotron, Mistral 2-5x faster with 70% less memory via Unsloth!
18
+
19
+ We have a free Google Colab Tesla T4 notebook for Llama 3.2 (3B) here: https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing
20
+
21
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ # unsloth/Llama-3.1-Nemotron-70B-Instruct-GGUF
25
+ For more details on the model, please go to NVIDIA's original [model card](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF)
26
+
27
+ ## ✨ Finetune for Free
28
+
29
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
30
+
31
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
32
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
33
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
34
+ | **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
35
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
36
+ | **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
37
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
38
+ | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
39
+
40
+ - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
41
+ - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
42
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
43
+
44
+ ## Special Thanks
45
+ A huge thank you to the Meta and Llama team for creating these models and for NVIDIA fine-tuning them and releasing them.