Model save
Browse files
README.md
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: facebook/wav2vec2-base
|
4 |
tags:
|
5 |
-
- automatic-speech-recognition
|
6 |
-
- timit_asr
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
- timit_asr
|
@@ -16,15 +14,15 @@ model-index:
|
|
16 |
name: Automatic Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
-
name:
|
20 |
type: timit_asr
|
21 |
config: clean
|
22 |
split: test
|
23 |
-
args:
|
24 |
metrics:
|
25 |
- name: Wer
|
26 |
type: wer
|
27 |
-
value: 0.
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
# wav2vec2-base-timit-fine-tuned
|
34 |
|
35 |
-
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss: 0.
|
38 |
-
- Wer: 0.
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -55,8 +53,8 @@ More information needed
|
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
- learning_rate: 0.0001
|
58 |
-
- train_batch_size:
|
59 |
-
- eval_batch_size:
|
60 |
- seed: 42
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
@@ -68,34 +66,22 @@ The following hyperparameters were used during training:
|
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
71 |
-
| 3.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 1.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.1372 | 10.3448 | 1200 | 0.4380 | 0.4727 |
|
83 |
-
| 0.1105 | 11.2069 | 1300 | 0.4509 | 0.4594 |
|
84 |
-
| 0.0992 | 12.0690 | 1400 | 0.4196 | 0.4544 |
|
85 |
-
| 0.1226 | 12.9310 | 1500 | 0.4237 | 0.4321 |
|
86 |
-
| 0.1013 | 13.7931 | 1600 | 0.4113 | 0.4298 |
|
87 |
-
| 0.0661 | 14.6552 | 1700 | 0.4038 | 0.4276 |
|
88 |
-
| 0.0901 | 15.5172 | 1800 | 0.4321 | 0.4225 |
|
89 |
-
| 0.053 | 16.3793 | 1900 | 0.4076 | 0.4236 |
|
90 |
-
| 0.0805 | 17.2414 | 2000 | 0.4336 | 0.4156 |
|
91 |
-
| 0.049 | 18.1034 | 2100 | 0.4193 | 0.4114 |
|
92 |
-
| 0.0717 | 18.9655 | 2200 | 0.4139 | 0.4091 |
|
93 |
-
| 0.0389 | 19.8276 | 2300 | 0.4216 | 0.4087 |
|
94 |
|
95 |
|
96 |
### Framework versions
|
97 |
|
98 |
- Transformers 4.42.0.dev0
|
99 |
-
- Pytorch 2.3.0a0+
|
100 |
- Datasets 2.19.1
|
101 |
- Tokenizers 0.19.1
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: facebook/wav2vec2-base
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
7 |
- timit_asr
|
|
|
14 |
name: Automatic Speech Recognition
|
15 |
type: automatic-speech-recognition
|
16 |
dataset:
|
17 |
+
name: timit_asr
|
18 |
type: timit_asr
|
19 |
config: clean
|
20 |
split: test
|
21 |
+
args: clean
|
22 |
metrics:
|
23 |
- name: Wer
|
24 |
type: wer
|
25 |
+
value: 0.4359464627151052
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# wav2vec2-base-timit-fine-tuned
|
32 |
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4279
|
36 |
+
- Wer: 0.4359
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 64
|
57 |
+
- eval_batch_size: 32
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
|:-------------:|:-------:|:----:|:---------------:|:------:|
|
69 |
+
| 3.158 | 1.7241 | 100 | 3.6803 | 1.0 |
|
70 |
+
| 2.9744 | 3.4483 | 200 | 3.1165 | 1.0 |
|
71 |
+
| 2.9266 | 5.1724 | 300 | 3.0175 | 1.0 |
|
72 |
+
| 2.1336 | 6.8966 | 400 | 2.2135 | 1.0117 |
|
73 |
+
| 1.0119 | 8.6207 | 500 | 1.0227 | 0.8251 |
|
74 |
+
| 0.4995 | 10.3448 | 600 | 0.7700 | 0.6574 |
|
75 |
+
| 0.3233 | 12.0690 | 700 | 0.4970 | 0.5241 |
|
76 |
+
| 0.2452 | 13.7931 | 800 | 0.4585 | 0.4908 |
|
77 |
+
| 0.181 | 15.5172 | 900 | 0.4626 | 0.4814 |
|
78 |
+
| 0.1419 | 17.2414 | 1000 | 0.4917 | 0.4775 |
|
79 |
+
| 0.1175 | 18.9655 | 1100 | 0.4279 | 0.4359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
- Transformers 4.42.0.dev0
|
85 |
+
- Pytorch 2.3.0a0+gitcd033a1
|
86 |
- Datasets 2.19.1
|
87 |
- Tokenizers 0.19.1
|