Upload 15 files
Browse files- .gitattributes +1 -0
- README.md +340 -0
- Vintern_logo.png +3 -0
- added_tokens.json +14 -0
- config.json +192 -0
- configuration_intern_vit.py +119 -0
- configuration_internvl_chat.py +95 -0
- conversation.py +396 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_intern_vit.py +435 -0
- modeling_internvl_chat.py +344 -0
- special_tokens_map.json +29 -0
- tokenizer_config.json +125 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Vintern_logo.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: OpenGVLab/InternVL2-1B
|
3 |
+
library_name: transformers
|
4 |
+
datasets:
|
5 |
+
- 5CD-AI/Viet-OCR-VQA
|
6 |
+
- 5CD-AI/Viet-Doc-VQA
|
7 |
+
- 5CD-AI/Viet-Doc-VQA-II
|
8 |
+
- Vi-VLM/Vista
|
9 |
+
- 5CD-AI/Viet-Receipt-VQA
|
10 |
+
- 5CD-AI/Viet-Sketches-VQA
|
11 |
+
- 5CD-AI/Viet-Geometry-VQA
|
12 |
+
- 5CD-AI/Viet-Wiki-Handwriting
|
13 |
+
- 5CD-AI/Viet-ComputerScience-VQA
|
14 |
+
- 5CD-AI/Viet-Handwriting-gemini-VQA
|
15 |
+
- 5CD-AI/Viet-Menu-gemini-VQA
|
16 |
+
- 5CD-AI/Viet-Vintext-gemini-VQA
|
17 |
+
- 5CD-AI/Viet-OpenViVQA-gemini-VQA
|
18 |
+
- 5CD-AI/Viet-Resume-VQA
|
19 |
+
- 5CD-AI/Viet-ViTextVQA-gemini-VQA
|
20 |
+
language:
|
21 |
+
- vi
|
22 |
+
- en
|
23 |
+
pipeline_tag: visual-question-answering
|
24 |
+
tags:
|
25 |
+
- vision
|
26 |
+
---
|
27 |
+
|
28 |
+
<div align="center">
|
29 |
+
<img src="Vintern_logo.png" width="700"/>
|
30 |
+
</div>
|
31 |
+
|
32 |
+
## Vintern-1B-v2 ❄️ (Viet-InternVL2-1B-v2) - The LLaVA 🌋 Challenger
|
33 |
+
|
34 |
+
We are excited to introduce **Vintern-1B-v2** the Vietnamese 🇻🇳 multimodal model that combines the advanced Vietnamese language model [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct)[1] with the latest visual model, [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px)[2], CVPR 2024. This model excels in tasks such as OCR-VQA, Doc-VQA, and Chart-VQA,... With only 1 billion parameters, it is **4096 context length** finetuned from the [Viet-InternVL2-1B](https://huggingface.co/5CD-AI/Viet-InternVL2-1B) model on over 3 million specialized image-question-answer pairs for optical character recognition 🔍, text recognition 🔤, document extraction 📑, and general VQA. The model can be integrated into various on-device applications 📱, demonstrating its versatility and robust capabilities.
|
35 |
+
|
36 |
+
[**\[🤗 HF Demo\]**](https://huggingface.co/spaces/khang119966/Vintern-v2-Demo)
|
37 |
+
|
38 |
+
The special thing is that our model can be easily finetuned with a T4 GPU on Google Colab by following the instructions provided at the end of this section.
|
39 |
+
|
40 |
+
## Model Details
|
41 |
+
|
42 |
+
| Model Name | Vision Part | Language Part |
|
43 |
+
| :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: |
|
44 |
+
| Vintern-1B-v2 | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) |
|
45 |
+
|
46 |
+
|
47 |
+
Vintern-1B-v2 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. Vintern-1B-v2 consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).
|
48 |
+
|
49 |
+
## Training details 📚
|
50 |
+
|
51 |
+
The fine-tuning dataset was meticulously sampled in part from the following datasets:
|
52 |
+
[Viet-OCR-VQA 📚](https://huggingface.co/datasets/5CD-AI/Viet-OCR-VQA), [Viet-Doc-VQA 📄](https://huggingface.co/datasets/5CD-AI/Viet-Doc-VQA), [Viet-Doc-VQA-II 📑](https://huggingface.co/datasets/5CD-AI/Viet-Doc-VQA-II), [Vista 🖼️](https://huggingface.co/datasets/Vi-VLM/Vista), [Viet-Receipt-VQA 🧾](https://huggingface.co/datasets/5CD-AI/Viet-Receipt-VQA), [Viet-Sketches-VQA ✏️](https://huggingface.co/datasets/5CD-AI/Viet-Sketches-VQA), [Viet-Geometry-VQA 📐](https://huggingface.co/datasets/5CD-AI/Viet-Geometry-VQA), [Viet-Wiki-Handwriting ✍️](https://huggingface.co/datasets/5CD-AI/Viet-Wiki-Handwriting), [Viet-ComputerScience-VQA 💻](https://huggingface.co/datasets/5CD-AI/Viet-ComputerScience-VQA), [Viet-Handwriting-gemini-VQA 🖋️](https://huggingface.co/datasets/5CD-AI/Viet-Handwriting-gemini-VQA), [Viet-Menu-gemini-VQA 🍽️](https://huggingface.co/datasets/5CD-AI/Viet-Menu-gemini-VQA), [Viet-Vintext-gemini-VQA 📜](https://huggingface.co/datasets/5CD-AI/Viet-Vintext-gemini-VQA), [Viet-OpenViVQA-gemini-VQA 🧠](https://huggingface.co/datasets/5CD-AI/Viet-OpenViVQA-gemini-VQA), [Viet-Resume-VQA 📃](https://huggingface.co/datasets/5CD-AI/Viet-Resume-VQA), [Viet-ViTextVQA-gemini-VQA 📑](https://huggingface.co/datasets/5CD-AI/Viet-ViTextVQA-gemini-VQA)
|
53 |
+
|
54 |
+
## Benchmarks 📈
|
55 |
+
|
56 |
+
Since there are still many different metrics that need to be tested, **we chose a quick and simple metric first to guide the development of our model**. Our metric is inspired by Lavy[4]. For the time being, we are using GPT-4 to evaluate the quality of answers on two datasets: OpenViVQA and ViTextVQA. Detailed results can be found at the provided [here](https://huggingface.co/datasets/5CD-AI/Vintern-1B-v2-Benchmark-gpt4o-score). The inputs are images, questions, labels, and predicted answers. The model will return a score from 0 to 10 for the corresponding answer quality. The results table is shown below.
|
57 |
+
|
58 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
59 |
+
<tr align="center">
|
60 |
+
<td rowspan="2"><b>Model</b></td>
|
61 |
+
<td colspan="2"><b>gpt4o-score</b></td>
|
62 |
+
</tr>
|
63 |
+
<tr align="center">
|
64 |
+
<td><b>OpenViVQA-dev</b></td>
|
65 |
+
<td><b>ViTextVQA-dev</b></td>
|
66 |
+
</tr>
|
67 |
+
<tr align="center">
|
68 |
+
<td align="left">Vintern-1B</td>
|
69 |
+
<td>7.1/10</td>
|
70 |
+
<td>7.6/10</td>
|
71 |
+
</tr>
|
72 |
+
<tr align="center">
|
73 |
+
<td align="left"><b>Vintern-1B-v2</b></td>
|
74 |
+
<td><b>7.7/10</b></td>
|
75 |
+
<td><b>7.7/10</b></td>
|
76 |
+
</tr>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
The benchmark result in [MTVQA](https://github.com/bytedance/MTVQA/tree/main)
|
80 |
+
|
81 |
+
| Models | Open-Source | Vietnamese Score |
|
82 |
+
|:----------------------------------:|:-------------:|:------------------:|
|
83 |
+
| Qwen2-VL 72B (Top 1) | ✗ | 41.6 |
|
84 |
+
| GPT-4o (Top 2) | ✗ | 34.2 |
|
85 |
+
| **Vintern-1B-V2** (Top 3) | ✓ | **31.7** |
|
86 |
+
| Qwen2-VL 7B | ✓ | 30.0 |
|
87 |
+
| Claude3 Opus | ✗ | 29.1 |
|
88 |
+
| GPT-4o mini | ✗ | 29.1 |
|
89 |
+
| GPT-4V | ✗ | 28.9 |
|
90 |
+
| Gemini Ultra | ✗ | 28.6 |
|
91 |
+
| InternVL2 76B | ✓ | 26.9 |
|
92 |
+
| QwenVL Max | ✗ | 23.5 |
|
93 |
+
| Claude3 Sonnet | ✗ | 20.8 |
|
94 |
+
| QwenVL Plus | ✗ | 18.1 |
|
95 |
+
| MiniCPM-V2.5 | ✓ | 15.3 |
|
96 |
+
| InternVL-V1.5 | ✗ | 12.4 |
|
97 |
+
|
98 |
+
We are still working on more detailed benchmarks.
|
99 |
+
|
100 |
+
## Examples
|
101 |
+
|
102 |
+
<div align="center">
|
103 |
+
<img src="ex_images/1.png" width="500"/>
|
104 |
+
</div>
|
105 |
+
|
106 |
+
```
|
107 |
+
User: <image>
|
108 |
+
Mô tả hình ảnh một cách chi tiết.
|
109 |
+
Assistant: Bức ảnh là một trang giấy kẻ ô vuông với dòng chữ viết tay bằng mực đen. Bố cục đơn giản, chỉ có nội dung văn bản được viết theo chiều dọc từ trên xuống dưới. Các dòng chữ được sắp xếp theo thứ tự từ trên xuống dưới như sau:
|
110 |
+
|
111 |
+
- Nghe thầy đọc thơ
|
112 |
+
- Em nghe thầy đọc bao ngày
|
113 |
+
- Tiếng thơ đỏ nắng xanh cây quanh nhà
|
114 |
+
- Mái chèo nghe vọng sông xa
|
115 |
+
- Em êm nghe tiếng của bà năm xưa
|
116 |
+
- Nghe trăng thở động tàu dừa
|
117 |
+
- Rào rào nghe chuyển con mưa giữa trời
|
118 |
+
- Thêm yêu tiếng hát nụ cười
|
119 |
+
- Nghe thơ em thấy đất trời đẹp ra.
|
120 |
+
- Trần Đăng Khoa
|
121 |
+
```
|
122 |
+
|
123 |
+
<div align="center">
|
124 |
+
<img src="ex_images/4.jpg" width="500"/>
|
125 |
+
</div>
|
126 |
+
|
127 |
+
```
|
128 |
+
User: <image>
|
129 |
+
Tam giác ABC là gì của đường tròn tâm O ?
|
130 |
+
Assistant: Tam giác ABC là tam giác nội tiếp của đường tròn tâm O.
|
131 |
+
```
|
132 |
+
|
133 |
+
<div align="center">
|
134 |
+
<img src="ex_images/2.jpg" width="500"/>
|
135 |
+
</div>
|
136 |
+
|
137 |
+
```
|
138 |
+
User: <image>
|
139 |
+
Mô tả hình ảnh một cách chi tiết.
|
140 |
+
Assistant: Bức ảnh chụp một con sông ở Việt Nam với những ngôi nhà cổ kính được sơn màu vàng nhạt. Phía trước là một con thuyền nhỏ màu đỏ và một chiếc thuyền lớn màu xanh dương.
|
141 |
+
Trên thuyền có một người đàn ông đang chèo thuyền. Hai bên bờ sông là những hàng cây xanh mát. Bầu trời trong xanh và có một vài đám mây trắng.
|
142 |
+
Ở góc dưới bên trái của bức ảnh có dòng chữ "VNEXPRESS".
|
143 |
+
```
|
144 |
+
|
145 |
+
<div align="center">
|
146 |
+
<img src="ex_images/3.png" width="400"/>
|
147 |
+
</div>
|
148 |
+
|
149 |
+
```
|
150 |
+
User: <image>
|
151 |
+
Mô tả hình ảnh một cách chi tiết.
|
152 |
+
Assistant: Bức ảnh là một thông báo tuyển dụng của công ty Mobifone. Bố cục được chia thành 3 phần chính:
|
153 |
+
|
154 |
+
- Phần đầu tiên là tiêu đề "TUYỂN DỤNG" được in chữ màu đỏ đậm, cỡ chữ lớn, nằm ở vị trí trung tâm phía trên cùng của bức ảnh.
|
155 |
+
|
156 |
+
- Phần thứ hai là phần giới thiệu về vị trí và yêu cầu của ứng viên. Phần này được trình bày theo dạng liệt kê các mục:
|
157 |
+
- Vị trí: Nhân viên kinh doanh
|
158 |
+
- Địa điểm: Thành phố và các huyện Yên Sơn, Sơn Dương, Hàm Yên, Chiêm Hóa
|
159 |
+
- Yêu cầu: Trình độ: Tốt nghiệp Trung cấp trở lên, Độ tuổi: Không quá 35 tuổi
|
160 |
+
|
161 |
+
- Phần thứ ba là phần giới thiệu về chế độ đãi ngộ. Phần này được trình bày theo dạng liệt kê các mục:
|
162 |
+
- Chế độ đãi ngộ:
|
163 |
+
- Mức lương: 7.000.000đ - 17.000.000đ
|
164 |
+
- Thưởng thi đua hàng tháng, quý: Thưởng theo doanh số
|
165 |
+
- Chế độ bảo hiểm theo quy định
|
166 |
+
- Được trau dồi các kỹ năng: Giao tiếp, thuyết phục, chăm sóc khách hàng...
|
167 |
+
|
168 |
+
Phần cuối cùng là phần "NỘP HỒ SƠ" với thông tin liên lạc của người nộp hồ sơ. Phần này được trình bày theo dạng liệt kê các mục:
|
169 |
+
- Người nhận: Trần Thị Thúy
|
170 |
+
- Địa chỉ: 547 đường Quang Trung, Tổ 25, Phường Phan Thiết, TP Tuyên Quang
|
171 |
+
- Điện thoại liên hệ: 0901.452.888
|
172 |
+
- Email nhận hồ sơ: [email protected]
|
173 |
+
- Thời hạn nộp hồ sơ: đến hết ngày 28/5/2021
|
174 |
+
```
|
175 |
+
|
176 |
+
<div align="center">
|
177 |
+
<img src="ex_images/5.jpg" width="400"/>
|
178 |
+
</div>
|
179 |
+
|
180 |
+
```
|
181 |
+
User: <image>
|
182 |
+
Con nào sẽ thắng ?
|
183 |
+
Assistant: Con thỏ sẽ thắng.
|
184 |
+
```
|
185 |
+
|
186 |
+
<div align="center">
|
187 |
+
<img src="ex_images/6.png" width="400"/>
|
188 |
+
</div>
|
189 |
+
|
190 |
+
|
191 |
+
```
|
192 |
+
User: <image>
|
193 |
+
Mô tả chi tiết hình ảnh.
|
194 |
+
Assistant: Bức ảnh hiển thị một đoạn mã nguồn được viết bằng ngôn ngữ lập trình Python. Đoạn mã này bao gồm hai phần:
|
195 |
+
Phần đầu: Nêu tiêu đề "Example of avoiding complex expressions" (Mô tả ví dụ về việc tránh các hàm phức tạp).
|
196 |
+
Phần chính: Bao gồm hai hàm square_numbers và main().
|
197 |
+
Hàm square_numbers nhận một tham số là danh sách số từ 1 đến 4. Hàm này sử dụng vòng lặp for để duyệt qua mỗi số trong danh sách và thêm nó vào danh sách squares. Sau đó, hàm trả về danh sách squares.
|
198 |
+
Hàm main() tạo một biến numbers với giá trị [1, 2, 3, 4], sau đó gọi hàm square_numbers và ghi kết quả vào biến result. Cuối cùng, hàm print(result) sẽ in ra kết quả của hàm main().
|
199 |
+
```
|
200 |
+
|
201 |
+
## Quickstart
|
202 |
+
|
203 |
+
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
|
204 |
+
To run inference using the model, follow the steps outlined in our Colab inference notebook
|
205 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZD1oB56PF0lF66RCuTVJYLTEV0tM3CFf?usp=sharing)
|
206 |
+
|
207 |
+
```python
|
208 |
+
import numpy as np
|
209 |
+
import torch
|
210 |
+
import torchvision.transforms as T
|
211 |
+
# from decord import VideoReader, cpu
|
212 |
+
from PIL import Image
|
213 |
+
from torchvision.transforms.functional import InterpolationMode
|
214 |
+
from transformers import AutoModel, AutoTokenizer
|
215 |
+
|
216 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
217 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
218 |
+
|
219 |
+
def build_transform(input_size):
|
220 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
221 |
+
transform = T.Compose([
|
222 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
223 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
224 |
+
T.ToTensor(),
|
225 |
+
T.Normalize(mean=MEAN, std=STD)
|
226 |
+
])
|
227 |
+
return transform
|
228 |
+
|
229 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
230 |
+
best_ratio_diff = float('inf')
|
231 |
+
best_ratio = (1, 1)
|
232 |
+
area = width * height
|
233 |
+
for ratio in target_ratios:
|
234 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
235 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
236 |
+
if ratio_diff < best_ratio_diff:
|
237 |
+
best_ratio_diff = ratio_diff
|
238 |
+
best_ratio = ratio
|
239 |
+
elif ratio_diff == best_ratio_diff:
|
240 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
241 |
+
best_ratio = ratio
|
242 |
+
return best_ratio
|
243 |
+
|
244 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
245 |
+
orig_width, orig_height = image.size
|
246 |
+
aspect_ratio = orig_width / orig_height
|
247 |
+
|
248 |
+
# calculate the existing image aspect ratio
|
249 |
+
target_ratios = set(
|
250 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
251 |
+
i * j <= max_num and i * j >= min_num)
|
252 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
253 |
+
|
254 |
+
# find the closest aspect ratio to the target
|
255 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
256 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
257 |
+
|
258 |
+
# calculate the target width and height
|
259 |
+
target_width = image_size * target_aspect_ratio[0]
|
260 |
+
target_height = image_size * target_aspect_ratio[1]
|
261 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
262 |
+
|
263 |
+
# resize the image
|
264 |
+
resized_img = image.resize((target_width, target_height))
|
265 |
+
processed_images = []
|
266 |
+
for i in range(blocks):
|
267 |
+
box = (
|
268 |
+
(i % (target_width // image_size)) * image_size,
|
269 |
+
(i // (target_width // image_size)) * image_size,
|
270 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
271 |
+
((i // (target_width // image_size)) + 1) * image_size
|
272 |
+
)
|
273 |
+
# split the image
|
274 |
+
split_img = resized_img.crop(box)
|
275 |
+
processed_images.append(split_img)
|
276 |
+
assert len(processed_images) == blocks
|
277 |
+
if use_thumbnail and len(processed_images) != 1:
|
278 |
+
thumbnail_img = image.resize((image_size, image_size))
|
279 |
+
processed_images.append(thumbnail_img)
|
280 |
+
return processed_images
|
281 |
+
|
282 |
+
def load_image(image_file, input_size=448, max_num=12):
|
283 |
+
image = Image.open(image_file).convert('RGB')
|
284 |
+
transform = build_transform(input_size=input_size)
|
285 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
286 |
+
pixel_values = [transform(image) for image in images]
|
287 |
+
pixel_values = torch.stack(pixel_values)
|
288 |
+
return pixel_values
|
289 |
+
|
290 |
+
model = AutoModel.from_pretrained(
|
291 |
+
"5CD-AI/Vintern-1B-v2",
|
292 |
+
torch_dtype=torch.bfloat16,
|
293 |
+
low_cpu_mem_usage=True,
|
294 |
+
trust_remote_code=True,
|
295 |
+
).eval().cuda()
|
296 |
+
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v2", trust_remote_code=True, use_fast=False)
|
297 |
+
|
298 |
+
test_image = 'test-image.jpg'
|
299 |
+
|
300 |
+
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
|
301 |
+
generation_config = dict(max_new_tokens= 1024, do_sample=False, num_beams = 3, repetition_penalty=2.5)
|
302 |
+
|
303 |
+
question = '<image>\nMô tả hình ảnh một cách chi tiết.'
|
304 |
+
|
305 |
+
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
|
306 |
+
print(f'User: {question}\nAssistant: {response}')
|
307 |
+
|
308 |
+
#question = "Câu hỏi khác ......"
|
309 |
+
#response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
|
310 |
+
#print(f'User: {question}\nAssistant: {response}')
|
311 |
+
```
|
312 |
+
|
313 |
+
## Finetune on your Data
|
314 |
+
|
315 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bK6fpWfResjv9UxWoKHDStXQ8bop3a6Z?usp=sharing)
|
316 |
+
|
317 |
+
|
318 |
+
## Citation
|
319 |
+
|
320 |
+
```
|
321 |
+
@misc{doan2024vintern1befficientmultimodallarge,
|
322 |
+
title={Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese},
|
323 |
+
author={Khang T. Doan and Bao G. Huynh and Dung T. Hoang and Thuc D. Pham and Nhat H. Pham and Quan T. M. Nguyen and Bang Q. Vo and Suong N. Hoang},
|
324 |
+
year={2024},
|
325 |
+
eprint={2408.12480},
|
326 |
+
archivePrefix={arXiv},
|
327 |
+
primaryClass={cs.LG},
|
328 |
+
url={https://arxiv.org/abs/2408.12480},
|
329 |
+
}
|
330 |
+
```
|
331 |
+
|
332 |
+
## References
|
333 |
+
|
334 |
+
[1] Yang, An, et al. "Qwen2 technical report." arXiv preprint arXiv:2407.10671 (2024).
|
335 |
+
|
336 |
+
[2] Chen, Zhe, et al. "Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
|
337 |
+
|
338 |
+
[3] Chen, Zhe, et al. "How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites." arXiv preprint arXiv:2404.16821 (2024).
|
339 |
+
|
340 |
+
[4] Tran, Chi, and Huong Le Thanh. "LaVy: Vietnamese Multimodal Large Language Model." arXiv preprint arXiv:2404.07922 (2024).
|
Vintern_logo.png
ADDED
Git LFS Details
|
added_tokens.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 151654,
|
3 |
+
"</img>": 151647,
|
4 |
+
"</quad>": 151650,
|
5 |
+
"</ref>": 151652,
|
6 |
+
"<IMG_CONTEXT>": 151648,
|
7 |
+
"<box>": 151653,
|
8 |
+
"<img>": 151646,
|
9 |
+
"<quad>": 151649,
|
10 |
+
"<ref>": 151651,
|
11 |
+
"<|endoftext|>": 151643,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "1d5e61e9bd8d8ac1d30d02ada4791f764feb8b24",
|
3 |
+
"_name_or_path": "khang119966/vintern-final",
|
4 |
+
"architectures": [
|
5 |
+
"InternVLChatModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "5CD-AI/Vintern-1B-v2--configuration_internvl_chat.InternVLChatConfig",
|
9 |
+
"AutoModel": "5CD-AI/Vintern-1B-v2--modeling_internvl_chat.InternVLChatModel",
|
10 |
+
"AutoModelForCausalLM": "5CD-AI/Vintern-1B-v2--modeling_internvl_chat.InternVLChatModel"
|
11 |
+
},
|
12 |
+
"downsample_ratio": 0.5,
|
13 |
+
"dynamic_image_size": true,
|
14 |
+
"force_image_size": 448,
|
15 |
+
"llm_config": {
|
16 |
+
"_name_or_path": "Qwen/Qwen2-0.5B-Instruct",
|
17 |
+
"add_cross_attention": false,
|
18 |
+
"architectures": [
|
19 |
+
"Qwen2ForCausalLM"
|
20 |
+
],
|
21 |
+
"attention_dropout": 0.0,
|
22 |
+
"bad_words_ids": null,
|
23 |
+
"begin_suppress_tokens": null,
|
24 |
+
"bos_token_id": 151643,
|
25 |
+
"chunk_size_feed_forward": 0,
|
26 |
+
"cross_attention_hidden_size": null,
|
27 |
+
"decoder_start_token_id": null,
|
28 |
+
"diversity_penalty": 0.0,
|
29 |
+
"do_sample": false,
|
30 |
+
"early_stopping": false,
|
31 |
+
"encoder_no_repeat_ngram_size": 0,
|
32 |
+
"eos_token_id": 151645,
|
33 |
+
"exponential_decay_length_penalty": null,
|
34 |
+
"finetuning_task": null,
|
35 |
+
"forced_bos_token_id": null,
|
36 |
+
"forced_eos_token_id": null,
|
37 |
+
"hidden_act": "silu",
|
38 |
+
"hidden_size": 896,
|
39 |
+
"id2label": {
|
40 |
+
"0": "LABEL_0",
|
41 |
+
"1": "LABEL_1"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 4864,
|
45 |
+
"is_decoder": false,
|
46 |
+
"is_encoder_decoder": false,
|
47 |
+
"label2id": {
|
48 |
+
"LABEL_0": 0,
|
49 |
+
"LABEL_1": 1
|
50 |
+
},
|
51 |
+
"length_penalty": 1.0,
|
52 |
+
"max_length": 20,
|
53 |
+
"max_position_embeddings": 32768,
|
54 |
+
"max_window_layers": 24,
|
55 |
+
"min_length": 0,
|
56 |
+
"model_type": "qwen2",
|
57 |
+
"no_repeat_ngram_size": 0,
|
58 |
+
"num_attention_heads": 14,
|
59 |
+
"num_beam_groups": 1,
|
60 |
+
"num_beams": 1,
|
61 |
+
"num_hidden_layers": 24,
|
62 |
+
"num_key_value_heads": 2,
|
63 |
+
"num_return_sequences": 1,
|
64 |
+
"output_attentions": false,
|
65 |
+
"output_hidden_states": false,
|
66 |
+
"output_scores": false,
|
67 |
+
"pad_token_id": null,
|
68 |
+
"prefix": null,
|
69 |
+
"problem_type": null,
|
70 |
+
"pruned_heads": {},
|
71 |
+
"remove_invalid_values": false,
|
72 |
+
"repetition_penalty": 1.0,
|
73 |
+
"return_dict": true,
|
74 |
+
"return_dict_in_generate": false,
|
75 |
+
"rms_norm_eps": 1e-06,
|
76 |
+
"rope_theta": 1000000.0,
|
77 |
+
"sep_token_id": null,
|
78 |
+
"sliding_window": 32768,
|
79 |
+
"suppress_tokens": null,
|
80 |
+
"task_specific_params": null,
|
81 |
+
"temperature": 1.0,
|
82 |
+
"tf_legacy_loss": false,
|
83 |
+
"tie_encoder_decoder": false,
|
84 |
+
"tie_word_embeddings": true,
|
85 |
+
"tokenizer_class": null,
|
86 |
+
"top_k": 50,
|
87 |
+
"top_p": 1.0,
|
88 |
+
"torch_dtype": "bfloat16",
|
89 |
+
"torchscript": false,
|
90 |
+
"transformers_version": "4.42.3",
|
91 |
+
"typical_p": 1.0,
|
92 |
+
"use_bfloat16": true,
|
93 |
+
"use_cache": true,
|
94 |
+
"use_sliding_window": false,
|
95 |
+
"vocab_size": 151655
|
96 |
+
},
|
97 |
+
"max_dynamic_patch": 12,
|
98 |
+
"min_dynamic_patch": 1,
|
99 |
+
"model_type": "internvl_chat",
|
100 |
+
"ps_version": "v2",
|
101 |
+
"select_layer": -1,
|
102 |
+
"template": "Hermes-2",
|
103 |
+
"torch_dtype": "bfloat16",
|
104 |
+
"transformers_version": null,
|
105 |
+
"use_backbone_lora": 0,
|
106 |
+
"use_llm_lora": 0,
|
107 |
+
"use_thumbnail": true,
|
108 |
+
"vision_config": {
|
109 |
+
"_name_or_path": "",
|
110 |
+
"add_cross_attention": false,
|
111 |
+
"architectures": [
|
112 |
+
"InternVisionModel"
|
113 |
+
],
|
114 |
+
"attention_dropout": 0.0,
|
115 |
+
"bad_words_ids": null,
|
116 |
+
"begin_suppress_tokens": null,
|
117 |
+
"bos_token_id": null,
|
118 |
+
"chunk_size_feed_forward": 0,
|
119 |
+
"cross_attention_hidden_size": null,
|
120 |
+
"decoder_start_token_id": null,
|
121 |
+
"diversity_penalty": 0.0,
|
122 |
+
"do_sample": false,
|
123 |
+
"drop_path_rate": 0.0,
|
124 |
+
"dropout": 0.0,
|
125 |
+
"early_stopping": false,
|
126 |
+
"encoder_no_repeat_ngram_size": 0,
|
127 |
+
"eos_token_id": null,
|
128 |
+
"exponential_decay_length_penalty": null,
|
129 |
+
"finetuning_task": null,
|
130 |
+
"forced_bos_token_id": null,
|
131 |
+
"forced_eos_token_id": null,
|
132 |
+
"hidden_act": "gelu",
|
133 |
+
"hidden_size": 1024,
|
134 |
+
"id2label": {
|
135 |
+
"0": "LABEL_0",
|
136 |
+
"1": "LABEL_1"
|
137 |
+
},
|
138 |
+
"image_size": 448,
|
139 |
+
"initializer_factor": 1.0,
|
140 |
+
"initializer_range": 0.02,
|
141 |
+
"intermediate_size": 4096,
|
142 |
+
"is_decoder": false,
|
143 |
+
"is_encoder_decoder": false,
|
144 |
+
"label2id": {
|
145 |
+
"LABEL_0": 0,
|
146 |
+
"LABEL_1": 1
|
147 |
+
},
|
148 |
+
"layer_norm_eps": 1e-06,
|
149 |
+
"length_penalty": 1.0,
|
150 |
+
"max_length": 20,
|
151 |
+
"min_length": 0,
|
152 |
+
"model_type": "intern_vit_6b",
|
153 |
+
"no_repeat_ngram_size": 0,
|
154 |
+
"norm_type": "layer_norm",
|
155 |
+
"num_attention_heads": 16,
|
156 |
+
"num_beam_groups": 1,
|
157 |
+
"num_beams": 1,
|
158 |
+
"num_channels": 3,
|
159 |
+
"num_hidden_layers": 24,
|
160 |
+
"num_return_sequences": 1,
|
161 |
+
"output_attentions": false,
|
162 |
+
"output_hidden_states": false,
|
163 |
+
"output_scores": false,
|
164 |
+
"pad_token_id": null,
|
165 |
+
"patch_size": 14,
|
166 |
+
"prefix": null,
|
167 |
+
"problem_type": null,
|
168 |
+
"pruned_heads": {},
|
169 |
+
"qk_normalization": false,
|
170 |
+
"qkv_bias": true,
|
171 |
+
"remove_invalid_values": false,
|
172 |
+
"repetition_penalty": 1.0,
|
173 |
+
"return_dict": true,
|
174 |
+
"return_dict_in_generate": false,
|
175 |
+
"sep_token_id": null,
|
176 |
+
"suppress_tokens": null,
|
177 |
+
"task_specific_params": null,
|
178 |
+
"temperature": 1.0,
|
179 |
+
"tf_legacy_loss": false,
|
180 |
+
"tie_encoder_decoder": false,
|
181 |
+
"tie_word_embeddings": true,
|
182 |
+
"tokenizer_class": null,
|
183 |
+
"top_k": 50,
|
184 |
+
"top_p": 1.0,
|
185 |
+
"torch_dtype": "bfloat16",
|
186 |
+
"torchscript": false,
|
187 |
+
"transformers_version": "4.42.3",
|
188 |
+
"typical_p": 1.0,
|
189 |
+
"use_bfloat16": true,
|
190 |
+
"use_flash_attn": false
|
191 |
+
}
|
192 |
+
}
|
configuration_intern_vit.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class InternVisionConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
18 |
+
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
num_channels (`int`, *optional*, defaults to 3):
|
25 |
+
Number of color channels in the input images (e.g., 3 for RGB).
|
26 |
+
patch_size (`int`, *optional*, defaults to 14):
|
27 |
+
The size (resolution) of each patch.
|
28 |
+
image_size (`int`, *optional*, defaults to 224):
|
29 |
+
The size (resolution) of each image.
|
30 |
+
qkv_bias (`bool`, *optional*, defaults to `False`):
|
31 |
+
Whether to add a bias to the queries and values in the self-attention layers.
|
32 |
+
hidden_size (`int`, *optional*, defaults to 3200):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
num_attention_heads (`int`, *optional*, defaults to 25):
|
35 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
36 |
+
intermediate_size (`int`, *optional*, defaults to 12800):
|
37 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
38 |
+
qk_normalization (`bool`, *optional*, defaults to `True`):
|
39 |
+
Whether to normalize the queries and keys in the self-attention layers.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to use flash attention mechanism.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
45 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
46 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
47 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
48 |
+
The epsilon used by the layer normalization layers.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
52 |
+
Dropout rate for stochastic depth.
|
53 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
54 |
+
The dropout ratio for the attention probabilities.
|
55 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
56 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
57 |
+
initializer_factor (`float`, *optional*, defaults to 0.1):
|
58 |
+
A factor for layer scale.
|
59 |
+
"""
|
60 |
+
|
61 |
+
model_type = 'intern_vit_6b'
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
num_channels=3,
|
66 |
+
patch_size=14,
|
67 |
+
image_size=224,
|
68 |
+
qkv_bias=False,
|
69 |
+
hidden_size=3200,
|
70 |
+
num_attention_heads=25,
|
71 |
+
intermediate_size=12800,
|
72 |
+
qk_normalization=True,
|
73 |
+
num_hidden_layers=48,
|
74 |
+
use_flash_attn=True,
|
75 |
+
hidden_act='gelu',
|
76 |
+
norm_type='rms_norm',
|
77 |
+
layer_norm_eps=1e-6,
|
78 |
+
dropout=0.0,
|
79 |
+
drop_path_rate=0.0,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
initializer_range=0.02,
|
82 |
+
initializer_factor=0.1,
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
self.hidden_size = hidden_size
|
88 |
+
self.intermediate_size = intermediate_size
|
89 |
+
self.dropout = dropout
|
90 |
+
self.drop_path_rate = drop_path_rate
|
91 |
+
self.num_hidden_layers = num_hidden_layers
|
92 |
+
self.num_attention_heads = num_attention_heads
|
93 |
+
self.num_channels = num_channels
|
94 |
+
self.patch_size = patch_size
|
95 |
+
self.image_size = image_size
|
96 |
+
self.initializer_range = initializer_range
|
97 |
+
self.initializer_factor = initializer_factor
|
98 |
+
self.attention_dropout = attention_dropout
|
99 |
+
self.layer_norm_eps = layer_norm_eps
|
100 |
+
self.hidden_act = hidden_act
|
101 |
+
self.norm_type = norm_type
|
102 |
+
self.qkv_bias = qkv_bias
|
103 |
+
self.qk_normalization = qk_normalization
|
104 |
+
self.use_flash_attn = use_flash_attn
|
105 |
+
|
106 |
+
@classmethod
|
107 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
108 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
109 |
+
|
110 |
+
if 'vision_config' in config_dict:
|
111 |
+
config_dict = config_dict['vision_config']
|
112 |
+
|
113 |
+
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
114 |
+
logger.warning(
|
115 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
116 |
+
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
117 |
+
)
|
118 |
+
|
119 |
+
return cls.from_dict(config_dict, **kwargs)
|
configuration_internvl_chat.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import copy
|
8 |
+
|
9 |
+
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from .configuration_intern_vit import InternVisionConfig
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class InternVLChatConfig(PretrainedConfig):
|
19 |
+
model_type = 'internvl_chat'
|
20 |
+
is_composition = True
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
vision_config=None,
|
25 |
+
llm_config=None,
|
26 |
+
use_backbone_lora=0,
|
27 |
+
use_llm_lora=0,
|
28 |
+
select_layer=-1,
|
29 |
+
force_image_size=None,
|
30 |
+
downsample_ratio=0.5,
|
31 |
+
template=None,
|
32 |
+
dynamic_image_size=False,
|
33 |
+
use_thumbnail=False,
|
34 |
+
ps_version='v1',
|
35 |
+
min_dynamic_patch=1,
|
36 |
+
max_dynamic_patch=6,
|
37 |
+
**kwargs):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
|
40 |
+
if vision_config is None:
|
41 |
+
vision_config = {}
|
42 |
+
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
43 |
+
|
44 |
+
if llm_config is None:
|
45 |
+
llm_config = {}
|
46 |
+
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
47 |
+
|
48 |
+
self.vision_config = InternVisionConfig(**vision_config)
|
49 |
+
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
50 |
+
self.llm_config = LlamaConfig(**llm_config)
|
51 |
+
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
52 |
+
self.llm_config = Qwen2Config(**llm_config)
|
53 |
+
else:
|
54 |
+
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
55 |
+
self.use_backbone_lora = use_backbone_lora
|
56 |
+
self.use_llm_lora = use_llm_lora
|
57 |
+
self.select_layer = select_layer
|
58 |
+
self.force_image_size = force_image_size
|
59 |
+
self.downsample_ratio = downsample_ratio
|
60 |
+
self.template = template
|
61 |
+
self.dynamic_image_size = dynamic_image_size
|
62 |
+
self.use_thumbnail = use_thumbnail
|
63 |
+
self.ps_version = ps_version # pixel shuffle version
|
64 |
+
self.min_dynamic_patch = min_dynamic_patch
|
65 |
+
self.max_dynamic_patch = max_dynamic_patch
|
66 |
+
|
67 |
+
logger.info(f'vision_select_layer: {self.select_layer}')
|
68 |
+
logger.info(f'ps_version: {self.ps_version}')
|
69 |
+
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
70 |
+
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
71 |
+
|
72 |
+
def to_dict(self):
|
73 |
+
"""
|
74 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
78 |
+
"""
|
79 |
+
output = copy.deepcopy(self.__dict__)
|
80 |
+
output['vision_config'] = self.vision_config.to_dict()
|
81 |
+
output['llm_config'] = self.llm_config.to_dict()
|
82 |
+
output['model_type'] = self.__class__.model_type
|
83 |
+
output['use_backbone_lora'] = self.use_backbone_lora
|
84 |
+
output['use_llm_lora'] = self.use_llm_lora
|
85 |
+
output['select_layer'] = self.select_layer
|
86 |
+
output['force_image_size'] = self.force_image_size
|
87 |
+
output['downsample_ratio'] = self.downsample_ratio
|
88 |
+
output['template'] = self.template
|
89 |
+
output['dynamic_image_size'] = self.dynamic_image_size
|
90 |
+
output['use_thumbnail'] = self.use_thumbnail
|
91 |
+
output['ps_version'] = self.ps_version
|
92 |
+
output['min_dynamic_patch'] = self.min_dynamic_patch
|
93 |
+
output['max_dynamic_patch'] = self.max_dynamic_patch
|
94 |
+
|
95 |
+
return output
|
conversation.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import dataclasses
|
9 |
+
from enum import IntEnum, auto
|
10 |
+
from typing import Any, Dict, List, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
class SeparatorStyle(IntEnum):
|
14 |
+
"""Separator styles."""
|
15 |
+
|
16 |
+
ADD_COLON_SINGLE = auto()
|
17 |
+
ADD_COLON_TWO = auto()
|
18 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
19 |
+
NO_COLON_SINGLE = auto()
|
20 |
+
NO_COLON_TWO = auto()
|
21 |
+
ADD_NEW_LINE_SINGLE = auto()
|
22 |
+
LLAMA2 = auto()
|
23 |
+
CHATGLM = auto()
|
24 |
+
CHATML = auto()
|
25 |
+
CHATINTERN = auto()
|
26 |
+
DOLLY = auto()
|
27 |
+
RWKV = auto()
|
28 |
+
PHOENIX = auto()
|
29 |
+
ROBIN = auto()
|
30 |
+
FALCON_CHAT = auto()
|
31 |
+
CHATGLM3 = auto()
|
32 |
+
INTERNVL_ZH = auto()
|
33 |
+
MPT = auto()
|
34 |
+
|
35 |
+
|
36 |
+
@dataclasses.dataclass
|
37 |
+
class Conversation:
|
38 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
39 |
+
|
40 |
+
# The name of this template
|
41 |
+
name: str
|
42 |
+
# The template of the system prompt
|
43 |
+
system_template: str = '{system_message}'
|
44 |
+
# The system message
|
45 |
+
system_message: str = ''
|
46 |
+
# The names of two roles
|
47 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
48 |
+
# All messages. Each item is (role, message).
|
49 |
+
messages: List[List[str]] = ()
|
50 |
+
# The number of few shot examples
|
51 |
+
offset: int = 0
|
52 |
+
# The separator style and configurations
|
53 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
54 |
+
sep: str = '\n'
|
55 |
+
sep2: str = None
|
56 |
+
# Stop criteria (the default one is EOS token)
|
57 |
+
stop_str: Union[str, List[str]] = None
|
58 |
+
# Stops generation if meeting any token in this list
|
59 |
+
stop_token_ids: List[int] = None
|
60 |
+
|
61 |
+
def get_prompt(self) -> str:
|
62 |
+
"""Get the prompt for generation."""
|
63 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
64 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
65 |
+
ret = system_prompt + self.sep
|
66 |
+
for role, message in self.messages:
|
67 |
+
if message:
|
68 |
+
ret += role + ': ' + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ':'
|
71 |
+
return ret
|
72 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
73 |
+
seps = [self.sep, self.sep2]
|
74 |
+
ret = system_prompt + seps[0]
|
75 |
+
for i, (role, message) in enumerate(self.messages):
|
76 |
+
if message:
|
77 |
+
ret += role + ': ' + message + seps[i % 2]
|
78 |
+
else:
|
79 |
+
ret += role + ':'
|
80 |
+
return ret
|
81 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
82 |
+
ret = system_prompt + self.sep
|
83 |
+
for role, message in self.messages:
|
84 |
+
if message:
|
85 |
+
ret += role + ': ' + message + self.sep
|
86 |
+
else:
|
87 |
+
ret += role + ': ' # must be end with a space
|
88 |
+
return ret
|
89 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
90 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
91 |
+
for role, message in self.messages:
|
92 |
+
if message:
|
93 |
+
ret += role + '\n' + message + self.sep
|
94 |
+
else:
|
95 |
+
ret += role + '\n'
|
96 |
+
return ret
|
97 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
98 |
+
ret = system_prompt
|
99 |
+
for role, message in self.messages:
|
100 |
+
if message:
|
101 |
+
ret += role + message + self.sep
|
102 |
+
else:
|
103 |
+
ret += role
|
104 |
+
return ret
|
105 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
106 |
+
seps = [self.sep, self.sep2]
|
107 |
+
ret = system_prompt
|
108 |
+
for i, (role, message) in enumerate(self.messages):
|
109 |
+
if message:
|
110 |
+
ret += role + message + seps[i % 2]
|
111 |
+
else:
|
112 |
+
ret += role
|
113 |
+
return ret
|
114 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
115 |
+
ret = system_prompt
|
116 |
+
for i, (role, message) in enumerate(self.messages):
|
117 |
+
if message:
|
118 |
+
ret += (
|
119 |
+
role
|
120 |
+
+ ': '
|
121 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
122 |
+
)
|
123 |
+
ret += '\n\n'
|
124 |
+
else:
|
125 |
+
ret += role + ':'
|
126 |
+
return ret
|
127 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
128 |
+
seps = [self.sep, self.sep2]
|
129 |
+
if self.system_message:
|
130 |
+
ret = system_prompt
|
131 |
+
else:
|
132 |
+
ret = '[INST] '
|
133 |
+
for i, (role, message) in enumerate(self.messages):
|
134 |
+
tag = self.roles[i % 2]
|
135 |
+
if message:
|
136 |
+
if i == 0:
|
137 |
+
ret += message + ' '
|
138 |
+
else:
|
139 |
+
ret += tag + ' ' + message + seps[i % 2]
|
140 |
+
else:
|
141 |
+
ret += tag
|
142 |
+
return ret
|
143 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
144 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
145 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
146 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
147 |
+
if system_prompt:
|
148 |
+
ret = system_prompt + self.sep
|
149 |
+
else:
|
150 |
+
ret = ''
|
151 |
+
|
152 |
+
for i, (role, message) in enumerate(self.messages):
|
153 |
+
if i % 2 == 0:
|
154 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
155 |
+
|
156 |
+
if message:
|
157 |
+
ret += f'{role}:{message}{self.sep}'
|
158 |
+
else:
|
159 |
+
ret += f'{role}:'
|
160 |
+
return ret
|
161 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
162 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
163 |
+
for role, message in self.messages:
|
164 |
+
if message:
|
165 |
+
ret += role + '\n' + message + self.sep + '\n'
|
166 |
+
else:
|
167 |
+
ret += role + '\n'
|
168 |
+
return ret
|
169 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
170 |
+
ret = ''
|
171 |
+
if self.system_message:
|
172 |
+
ret += system_prompt
|
173 |
+
for role, message in self.messages:
|
174 |
+
if message:
|
175 |
+
ret += role + '\n' + ' ' + message
|
176 |
+
else:
|
177 |
+
ret += role
|
178 |
+
return ret
|
179 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
180 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
181 |
+
seps = [self.sep, self.sep2]
|
182 |
+
ret = system_prompt
|
183 |
+
for i, (role, message) in enumerate(self.messages):
|
184 |
+
# if i % 2 == 0:
|
185 |
+
# ret += "<s>"
|
186 |
+
if message:
|
187 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
188 |
+
else:
|
189 |
+
ret += role + ':'
|
190 |
+
return ret
|
191 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
192 |
+
seps = [self.sep, self.sep2]
|
193 |
+
ret = system_prompt
|
194 |
+
for i, (role, message) in enumerate(self.messages):
|
195 |
+
if message:
|
196 |
+
ret += role + ':\n' + message + seps[i % 2]
|
197 |
+
if i % 2 == 1:
|
198 |
+
ret += '\n\n'
|
199 |
+
else:
|
200 |
+
ret += role + ':\n'
|
201 |
+
return ret
|
202 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
203 |
+
ret = system_prompt
|
204 |
+
for role, message in self.messages:
|
205 |
+
if message:
|
206 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
207 |
+
else:
|
208 |
+
ret += role + ': ' + '<s>'
|
209 |
+
return ret
|
210 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
211 |
+
ret = system_prompt + self.sep
|
212 |
+
for role, message in self.messages:
|
213 |
+
if message:
|
214 |
+
ret += role + ':\n' + message + self.sep
|
215 |
+
else:
|
216 |
+
ret += role + ':\n'
|
217 |
+
return ret
|
218 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
219 |
+
ret = ''
|
220 |
+
if self.system_message:
|
221 |
+
ret += system_prompt + self.sep
|
222 |
+
for role, message in self.messages:
|
223 |
+
if message:
|
224 |
+
ret += role + ': ' + message + self.sep
|
225 |
+
else:
|
226 |
+
ret += role + ':'
|
227 |
+
|
228 |
+
return ret
|
229 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
230 |
+
seps = [self.sep, self.sep2]
|
231 |
+
ret = self.system_message + seps[0]
|
232 |
+
for i, (role, message) in enumerate(self.messages):
|
233 |
+
if message:
|
234 |
+
ret += role + ': ' + message + seps[i % 2]
|
235 |
+
else:
|
236 |
+
ret += role + ':'
|
237 |
+
return ret
|
238 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
239 |
+
ret = system_prompt + self.sep
|
240 |
+
for role, message in self.messages:
|
241 |
+
if message:
|
242 |
+
if type(message) is tuple:
|
243 |
+
message, _, _ = message
|
244 |
+
ret += role + message + self.sep
|
245 |
+
else:
|
246 |
+
ret += role
|
247 |
+
return ret
|
248 |
+
else:
|
249 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
250 |
+
|
251 |
+
def set_system_message(self, system_message: str):
|
252 |
+
"""Set the system message."""
|
253 |
+
self.system_message = system_message
|
254 |
+
|
255 |
+
def append_message(self, role: str, message: str):
|
256 |
+
"""Append a new message."""
|
257 |
+
self.messages.append([role, message])
|
258 |
+
|
259 |
+
def update_last_message(self, message: str):
|
260 |
+
"""Update the last output.
|
261 |
+
|
262 |
+
The last message is typically set to be None when constructing the prompt,
|
263 |
+
so we need to update it in-place after getting the response from a model.
|
264 |
+
"""
|
265 |
+
self.messages[-1][1] = message
|
266 |
+
|
267 |
+
def to_gradio_chatbot(self):
|
268 |
+
"""Convert the conversation to gradio chatbot format."""
|
269 |
+
ret = []
|
270 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
271 |
+
if i % 2 == 0:
|
272 |
+
ret.append([msg, None])
|
273 |
+
else:
|
274 |
+
ret[-1][-1] = msg
|
275 |
+
return ret
|
276 |
+
|
277 |
+
def to_openai_api_messages(self):
|
278 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
279 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
280 |
+
|
281 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
282 |
+
if i % 2 == 0:
|
283 |
+
ret.append({'role': 'user', 'content': msg})
|
284 |
+
else:
|
285 |
+
if msg is not None:
|
286 |
+
ret.append({'role': 'assistant', 'content': msg})
|
287 |
+
return ret
|
288 |
+
|
289 |
+
def copy(self):
|
290 |
+
return Conversation(
|
291 |
+
name=self.name,
|
292 |
+
system_template=self.system_template,
|
293 |
+
system_message=self.system_message,
|
294 |
+
roles=self.roles,
|
295 |
+
messages=[[x, y] for x, y in self.messages],
|
296 |
+
offset=self.offset,
|
297 |
+
sep_style=self.sep_style,
|
298 |
+
sep=self.sep,
|
299 |
+
sep2=self.sep2,
|
300 |
+
stop_str=self.stop_str,
|
301 |
+
stop_token_ids=self.stop_token_ids,
|
302 |
+
)
|
303 |
+
|
304 |
+
def dict(self):
|
305 |
+
return {
|
306 |
+
'template_name': self.name,
|
307 |
+
'system_message': self.system_message,
|
308 |
+
'roles': self.roles,
|
309 |
+
'messages': self.messages,
|
310 |
+
'offset': self.offset,
|
311 |
+
}
|
312 |
+
|
313 |
+
|
314 |
+
# A global registry for all conversation templates
|
315 |
+
conv_templates: Dict[str, Conversation] = {}
|
316 |
+
|
317 |
+
|
318 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
319 |
+
"""Register a new conversation template."""
|
320 |
+
if not override:
|
321 |
+
assert (
|
322 |
+
template.name not in conv_templates
|
323 |
+
), f'{template.name} has been registered.'
|
324 |
+
|
325 |
+
conv_templates[template.name] = template
|
326 |
+
|
327 |
+
|
328 |
+
def get_conv_template(name: str) -> Conversation:
|
329 |
+
"""Get a conversation template."""
|
330 |
+
return conv_templates[name].copy()
|
331 |
+
|
332 |
+
|
333 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
334 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
335 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
336 |
+
# Therefore, they are completely equivalent during inference.
|
337 |
+
register_conv_template(
|
338 |
+
Conversation(
|
339 |
+
name='Hermes-2',
|
340 |
+
system_template='<|im_start|>system\n{system_message}',
|
341 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
342 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
343 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
344 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
345 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
346 |
+
sep_style=SeparatorStyle.MPT,
|
347 |
+
sep='<|im_end|>',
|
348 |
+
stop_token_ids=[
|
349 |
+
2,
|
350 |
+
6,
|
351 |
+
7,
|
352 |
+
8,
|
353 |
+
],
|
354 |
+
stop_str='<|endoftext|>',
|
355 |
+
)
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
register_conv_template(
|
360 |
+
Conversation(
|
361 |
+
name='internlm2-chat',
|
362 |
+
system_template='<|im_start|>system\n{system_message}',
|
363 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
364 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
365 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
366 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
367 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
368 |
+
sep_style=SeparatorStyle.MPT,
|
369 |
+
sep='<|im_end|>',
|
370 |
+
stop_token_ids=[
|
371 |
+
2,
|
372 |
+
92543,
|
373 |
+
92542
|
374 |
+
]
|
375 |
+
)
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
register_conv_template(
|
380 |
+
Conversation(
|
381 |
+
name='phi3-chat',
|
382 |
+
system_template='<|system|>\n{system_message}',
|
383 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
384 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
385 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
386 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
387 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
388 |
+
sep_style=SeparatorStyle.MPT,
|
389 |
+
sep='<|end|>',
|
390 |
+
stop_token_ids=[
|
391 |
+
2,
|
392 |
+
32000,
|
393 |
+
32007
|
394 |
+
]
|
395 |
+
)
|
396 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.42.3"
|
4 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c95ece988fd66141dd22d5cb5d4651d067fea339a2725ef5ac9337b20ca6e4d4
|
3 |
+
size 1876395376
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from einops import rearrange
|
12 |
+
from timm.models.layers import DropPath
|
13 |
+
from torch import nn
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
16 |
+
BaseModelOutputWithPooling)
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
from .configuration_intern_vit import InternVisionConfig
|
21 |
+
|
22 |
+
try:
|
23 |
+
try: # v1
|
24 |
+
from flash_attn.flash_attn_interface import \
|
25 |
+
flash_attn_unpadded_qkvpacked_func
|
26 |
+
except: # v2
|
27 |
+
from flash_attn.flash_attn_interface import \
|
28 |
+
flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
29 |
+
|
30 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
31 |
+
|
32 |
+
has_flash_attn = True
|
33 |
+
except:
|
34 |
+
print('FlashAttention is not installed.')
|
35 |
+
has_flash_attn = False
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class FlashAttention(nn.Module):
|
41 |
+
"""Implement the scaled dot product attention with softmax.
|
42 |
+
Arguments
|
43 |
+
---------
|
44 |
+
softmax_scale: The temperature to use for the softmax attention.
|
45 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
46 |
+
runtime)
|
47 |
+
attention_dropout: The dropout rate to apply to the attention
|
48 |
+
(default: 0.0)
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
52 |
+
super().__init__()
|
53 |
+
self.softmax_scale = softmax_scale
|
54 |
+
self.dropout_p = attention_dropout
|
55 |
+
|
56 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
57 |
+
max_s=None, need_weights=False):
|
58 |
+
"""Implements the multihead softmax attention.
|
59 |
+
Arguments
|
60 |
+
---------
|
61 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
62 |
+
if unpadded: (nnz, 3, h, d)
|
63 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
64 |
+
"""
|
65 |
+
assert not need_weights
|
66 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
67 |
+
assert qkv.is_cuda
|
68 |
+
|
69 |
+
if cu_seqlens is None:
|
70 |
+
batch_size = qkv.shape[0]
|
71 |
+
seqlen = qkv.shape[1]
|
72 |
+
if key_padding_mask is None:
|
73 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
74 |
+
max_s = seqlen
|
75 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
76 |
+
device=qkv.device)
|
77 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
78 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
79 |
+
softmax_scale=self.softmax_scale, causal=causal
|
80 |
+
)
|
81 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
82 |
+
else:
|
83 |
+
nheads = qkv.shape[-2]
|
84 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
85 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
86 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
87 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
88 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
89 |
+
softmax_scale=self.softmax_scale, causal=causal
|
90 |
+
)
|
91 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
92 |
+
indices, batch_size, seqlen),
|
93 |
+
'b s (h d) -> b s h d', h=nheads)
|
94 |
+
else:
|
95 |
+
assert max_s is not None
|
96 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
97 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
98 |
+
softmax_scale=self.softmax_scale, causal=causal
|
99 |
+
)
|
100 |
+
|
101 |
+
return output, None
|
102 |
+
|
103 |
+
|
104 |
+
class InternRMSNorm(nn.Module):
|
105 |
+
def __init__(self, hidden_size, eps=1e-6):
|
106 |
+
super().__init__()
|
107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
+
self.variance_epsilon = eps
|
109 |
+
|
110 |
+
def forward(self, hidden_states):
|
111 |
+
input_dtype = hidden_states.dtype
|
112 |
+
hidden_states = hidden_states.to(torch.float32)
|
113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
115 |
+
return self.weight * hidden_states.to(input_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
try:
|
119 |
+
from apex.normalization import FusedRMSNorm
|
120 |
+
|
121 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
122 |
+
|
123 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
124 |
+
except ImportError:
|
125 |
+
# using the normal InternRMSNorm
|
126 |
+
pass
|
127 |
+
except Exception:
|
128 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
129 |
+
pass
|
130 |
+
|
131 |
+
|
132 |
+
NORM2FN = {
|
133 |
+
'rms_norm': InternRMSNorm,
|
134 |
+
'layer_norm': nn.LayerNorm,
|
135 |
+
}
|
136 |
+
|
137 |
+
|
138 |
+
class InternVisionEmbeddings(nn.Module):
|
139 |
+
def __init__(self, config: InternVisionConfig):
|
140 |
+
super().__init__()
|
141 |
+
self.config = config
|
142 |
+
self.embed_dim = config.hidden_size
|
143 |
+
self.image_size = config.image_size
|
144 |
+
self.patch_size = config.patch_size
|
145 |
+
|
146 |
+
self.class_embedding = nn.Parameter(
|
147 |
+
torch.randn(1, 1, self.embed_dim),
|
148 |
+
)
|
149 |
+
|
150 |
+
self.patch_embedding = nn.Conv2d(
|
151 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
152 |
+
)
|
153 |
+
|
154 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
155 |
+
self.num_positions = self.num_patches + 1
|
156 |
+
|
157 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
158 |
+
|
159 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
160 |
+
target_dtype = pos_embed.dtype
|
161 |
+
pos_embed = pos_embed.float().reshape(
|
162 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
163 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
164 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
165 |
+
return pos_embed
|
166 |
+
|
167 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
168 |
+
target_dtype = self.patch_embedding.weight.dtype
|
169 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
170 |
+
batch_size, _, height, width = patch_embeds.shape
|
171 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
172 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
173 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
174 |
+
position_embedding = torch.cat([
|
175 |
+
self.position_embedding[:, :1, :],
|
176 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
177 |
+
], dim=1)
|
178 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
179 |
+
return embeddings
|
180 |
+
|
181 |
+
|
182 |
+
class InternAttention(nn.Module):
|
183 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
184 |
+
|
185 |
+
def __init__(self, config: InternVisionConfig):
|
186 |
+
super().__init__()
|
187 |
+
self.config = config
|
188 |
+
self.embed_dim = config.hidden_size
|
189 |
+
self.num_heads = config.num_attention_heads
|
190 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
191 |
+
if config.use_flash_attn and not has_flash_attn:
|
192 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
193 |
+
self.head_dim = self.embed_dim // self.num_heads
|
194 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
195 |
+
raise ValueError(
|
196 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
197 |
+
f' {self.num_heads}).'
|
198 |
+
)
|
199 |
+
|
200 |
+
self.scale = self.head_dim ** -0.5
|
201 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
202 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
203 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
204 |
+
|
205 |
+
self.qk_normalization = config.qk_normalization
|
206 |
+
|
207 |
+
if self.qk_normalization:
|
208 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
209 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
210 |
+
|
211 |
+
if self.use_flash_attn:
|
212 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
213 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
214 |
+
|
215 |
+
def _naive_attn(self, x):
|
216 |
+
B, N, C = x.shape
|
217 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
218 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
219 |
+
|
220 |
+
if self.qk_normalization:
|
221 |
+
B_, H_, N_, D_ = q.shape
|
222 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
223 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
224 |
+
|
225 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
226 |
+
attn = attn.softmax(dim=-1)
|
227 |
+
attn = self.attn_drop(attn)
|
228 |
+
|
229 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
230 |
+
x = self.proj(x)
|
231 |
+
x = self.proj_drop(x)
|
232 |
+
return x
|
233 |
+
|
234 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
235 |
+
qkv = self.qkv(x)
|
236 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
237 |
+
|
238 |
+
if self.qk_normalization:
|
239 |
+
q, k, v = qkv.unbind(2)
|
240 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
241 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
242 |
+
qkv = torch.stack([q, k, v], dim=2)
|
243 |
+
|
244 |
+
context, _ = self.inner_attn(
|
245 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
246 |
+
)
|
247 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
248 |
+
outs = self.proj_drop(outs)
|
249 |
+
return outs
|
250 |
+
|
251 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
252 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
253 |
+
return x
|
254 |
+
|
255 |
+
|
256 |
+
class InternMLP(nn.Module):
|
257 |
+
def __init__(self, config: InternVisionConfig):
|
258 |
+
super().__init__()
|
259 |
+
self.config = config
|
260 |
+
self.act = ACT2FN[config.hidden_act]
|
261 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
262 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
263 |
+
|
264 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
265 |
+
hidden_states = self.fc1(hidden_states)
|
266 |
+
hidden_states = self.act(hidden_states)
|
267 |
+
hidden_states = self.fc2(hidden_states)
|
268 |
+
return hidden_states
|
269 |
+
|
270 |
+
|
271 |
+
class InternVisionEncoderLayer(nn.Module):
|
272 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
273 |
+
super().__init__()
|
274 |
+
self.embed_dim = config.hidden_size
|
275 |
+
self.intermediate_size = config.intermediate_size
|
276 |
+
self.norm_type = config.norm_type
|
277 |
+
|
278 |
+
self.attn = InternAttention(config)
|
279 |
+
self.mlp = InternMLP(config)
|
280 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
281 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
282 |
+
|
283 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
284 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
285 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
286 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
287 |
+
|
288 |
+
def forward(
|
289 |
+
self,
|
290 |
+
hidden_states: torch.Tensor,
|
291 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
292 |
+
"""
|
293 |
+
Args:
|
294 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
295 |
+
"""
|
296 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
|
297 |
+
|
298 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
|
299 |
+
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class InternVisionEncoder(nn.Module):
|
304 |
+
"""
|
305 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
306 |
+
[`InternEncoderLayer`].
|
307 |
+
|
308 |
+
Args:
|
309 |
+
config (`InternConfig`):
|
310 |
+
The corresponding vision configuration for the `InternEncoder`.
|
311 |
+
"""
|
312 |
+
|
313 |
+
def __init__(self, config: InternVisionConfig):
|
314 |
+
super().__init__()
|
315 |
+
self.config = config
|
316 |
+
# stochastic depth decay rule
|
317 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
318 |
+
self.layers = nn.ModuleList([
|
319 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
320 |
+
self.gradient_checkpointing = True
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
inputs_embeds,
|
325 |
+
output_hidden_states: Optional[bool] = None,
|
326 |
+
return_dict: Optional[bool] = None,
|
327 |
+
) -> Union[Tuple, BaseModelOutput]:
|
328 |
+
r"""
|
329 |
+
Args:
|
330 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
331 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
332 |
+
output_hidden_states (`bool`, *optional*):
|
333 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
334 |
+
for more detail.
|
335 |
+
return_dict (`bool`, *optional*):
|
336 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
337 |
+
"""
|
338 |
+
output_hidden_states = (
|
339 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
340 |
+
)
|
341 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
342 |
+
|
343 |
+
encoder_states = () if output_hidden_states else None
|
344 |
+
hidden_states = inputs_embeds
|
345 |
+
|
346 |
+
for idx, encoder_layer in enumerate(self.layers):
|
347 |
+
if output_hidden_states:
|
348 |
+
encoder_states = encoder_states + (hidden_states,)
|
349 |
+
if self.gradient_checkpointing and self.training:
|
350 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
351 |
+
encoder_layer,
|
352 |
+
hidden_states)
|
353 |
+
else:
|
354 |
+
layer_outputs = encoder_layer(
|
355 |
+
hidden_states,
|
356 |
+
)
|
357 |
+
hidden_states = layer_outputs
|
358 |
+
|
359 |
+
if output_hidden_states:
|
360 |
+
encoder_states = encoder_states + (hidden_states,)
|
361 |
+
|
362 |
+
if not return_dict:
|
363 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
364 |
+
return BaseModelOutput(
|
365 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
366 |
+
)
|
367 |
+
|
368 |
+
|
369 |
+
class InternVisionModel(PreTrainedModel):
|
370 |
+
main_input_name = 'pixel_values'
|
371 |
+
_supports_flash_attn_2 = True
|
372 |
+
config_class = InternVisionConfig
|
373 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
374 |
+
|
375 |
+
def __init__(self, config: InternVisionConfig):
|
376 |
+
super().__init__(config)
|
377 |
+
self.config = config
|
378 |
+
|
379 |
+
self.embeddings = InternVisionEmbeddings(config)
|
380 |
+
self.encoder = InternVisionEncoder(config)
|
381 |
+
|
382 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
383 |
+
pos_emb = self.embeddings.position_embedding
|
384 |
+
_, num_positions, embed_dim = pos_emb.shape
|
385 |
+
cls_emb = pos_emb[:, :1, :]
|
386 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
387 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
388 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
389 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
390 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
391 |
+
self.embeddings.image_size = new_size
|
392 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
393 |
+
|
394 |
+
def get_input_embeddings(self):
|
395 |
+
return self.embeddings
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
400 |
+
output_hidden_states: Optional[bool] = None,
|
401 |
+
return_dict: Optional[bool] = None,
|
402 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
403 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
404 |
+
output_hidden_states = (
|
405 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
406 |
+
)
|
407 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
408 |
+
|
409 |
+
if pixel_values is None and pixel_embeds is None:
|
410 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
411 |
+
|
412 |
+
if pixel_embeds is not None:
|
413 |
+
hidden_states = pixel_embeds
|
414 |
+
else:
|
415 |
+
if len(pixel_values.shape) == 4:
|
416 |
+
hidden_states = self.embeddings(pixel_values)
|
417 |
+
else:
|
418 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
419 |
+
encoder_outputs = self.encoder(
|
420 |
+
inputs_embeds=hidden_states,
|
421 |
+
output_hidden_states=output_hidden_states,
|
422 |
+
return_dict=return_dict,
|
423 |
+
)
|
424 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
425 |
+
pooled_output = last_hidden_state[:, 0, :]
|
426 |
+
|
427 |
+
if not return_dict:
|
428 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
429 |
+
|
430 |
+
return BaseModelOutputWithPooling(
|
431 |
+
last_hidden_state=last_hidden_state,
|
432 |
+
pooler_output=pooled_output,
|
433 |
+
hidden_states=encoder_outputs.hidden_states,
|
434 |
+
attentions=encoder_outputs.attentions,
|
435 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
import transformers
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
14 |
+
Qwen2ForCausalLM)
|
15 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import ModelOutput, logging
|
18 |
+
|
19 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
20 |
+
from .conversation import get_conv_template
|
21 |
+
from .modeling_intern_vit import InternVisionModel
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
def version_cmp(v1, v2, op='eq'):
|
27 |
+
import operator
|
28 |
+
|
29 |
+
from packaging import version
|
30 |
+
op_func = getattr(operator, op)
|
31 |
+
return op_func(version.parse(v1), version.parse(v2))
|
32 |
+
|
33 |
+
|
34 |
+
class InternVLChatModel(PreTrainedModel):
|
35 |
+
config_class = InternVLChatConfig
|
36 |
+
main_input_name = 'pixel_values'
|
37 |
+
_supports_flash_attn_2 = True
|
38 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
|
39 |
+
|
40 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
41 |
+
super().__init__(config)
|
42 |
+
|
43 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
44 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
45 |
+
patch_size = config.vision_config.patch_size
|
46 |
+
self.patch_size = patch_size
|
47 |
+
self.select_layer = config.select_layer
|
48 |
+
self.template = config.template
|
49 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
50 |
+
self.downsample_ratio = config.downsample_ratio
|
51 |
+
self.ps_version = config.ps_version
|
52 |
+
|
53 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
54 |
+
logger.info(f'ps_version: {self.ps_version}')
|
55 |
+
if vision_model is not None:
|
56 |
+
self.vision_model = vision_model
|
57 |
+
else:
|
58 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
59 |
+
if language_model is not None:
|
60 |
+
self.language_model = language_model
|
61 |
+
else:
|
62 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
63 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
64 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
65 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
66 |
+
else:
|
67 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
68 |
+
|
69 |
+
vit_hidden_size = config.vision_config.hidden_size
|
70 |
+
llm_hidden_size = config.llm_config.hidden_size
|
71 |
+
|
72 |
+
self.mlp1 = nn.Sequential(
|
73 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
74 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
75 |
+
nn.GELU(),
|
76 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
77 |
+
)
|
78 |
+
|
79 |
+
self.img_context_token_id = None
|
80 |
+
self.conv_template = get_conv_template(self.template)
|
81 |
+
self.system_message = self.conv_template.system_message
|
82 |
+
|
83 |
+
def forward(
|
84 |
+
self,
|
85 |
+
pixel_values: torch.FloatTensor,
|
86 |
+
input_ids: torch.LongTensor = None,
|
87 |
+
attention_mask: Optional[torch.Tensor] = None,
|
88 |
+
position_ids: Optional[torch.LongTensor] = None,
|
89 |
+
image_flags: Optional[torch.LongTensor] = None,
|
90 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
91 |
+
labels: Optional[torch.LongTensor] = None,
|
92 |
+
use_cache: Optional[bool] = None,
|
93 |
+
output_attentions: Optional[bool] = None,
|
94 |
+
output_hidden_states: Optional[bool] = None,
|
95 |
+
return_dict: Optional[bool] = None,
|
96 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
97 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
98 |
+
|
99 |
+
image_flags = image_flags.squeeze(-1)
|
100 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
101 |
+
|
102 |
+
vit_embeds = self.extract_feature(pixel_values)
|
103 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
104 |
+
vit_batch_size = pixel_values.shape[0]
|
105 |
+
|
106 |
+
B, N, C = input_embeds.shape
|
107 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
108 |
+
|
109 |
+
if torch.distributed.get_rank() == 0:
|
110 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
111 |
+
|
112 |
+
input_ids = input_ids.reshape(B * N)
|
113 |
+
selected = (input_ids == self.img_context_token_id)
|
114 |
+
try:
|
115 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
116 |
+
except Exception as e:
|
117 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
118 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
119 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
120 |
+
n_token = selected.sum()
|
121 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
122 |
+
|
123 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
124 |
+
|
125 |
+
outputs = self.language_model(
|
126 |
+
inputs_embeds=input_embeds,
|
127 |
+
attention_mask=attention_mask,
|
128 |
+
position_ids=position_ids,
|
129 |
+
past_key_values=past_key_values,
|
130 |
+
use_cache=use_cache,
|
131 |
+
output_attentions=output_attentions,
|
132 |
+
output_hidden_states=output_hidden_states,
|
133 |
+
return_dict=return_dict,
|
134 |
+
)
|
135 |
+
logits = outputs.logits
|
136 |
+
|
137 |
+
loss = None
|
138 |
+
if labels is not None:
|
139 |
+
# Shift so that tokens < n predict n
|
140 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
141 |
+
shift_labels = labels[..., 1:].contiguous()
|
142 |
+
# Flatten the tokens
|
143 |
+
loss_fct = CrossEntropyLoss()
|
144 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
145 |
+
shift_labels = shift_labels.view(-1)
|
146 |
+
# Enable model parallelism
|
147 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
148 |
+
loss = loss_fct(shift_logits, shift_labels)
|
149 |
+
|
150 |
+
if not return_dict:
|
151 |
+
output = (logits,) + outputs[1:]
|
152 |
+
return (loss,) + output if loss is not None else output
|
153 |
+
|
154 |
+
return CausalLMOutputWithPast(
|
155 |
+
loss=loss,
|
156 |
+
logits=logits,
|
157 |
+
past_key_values=outputs.past_key_values,
|
158 |
+
hidden_states=outputs.hidden_states,
|
159 |
+
attentions=outputs.attentions,
|
160 |
+
)
|
161 |
+
|
162 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
163 |
+
n, w, h, c = x.size()
|
164 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
165 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
166 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
167 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
168 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
169 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
170 |
+
int(c / (scale_factor * scale_factor)))
|
171 |
+
if self.ps_version == 'v1':
|
172 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
173 |
+
'which results in a transposed image.')
|
174 |
+
else:
|
175 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
176 |
+
return x
|
177 |
+
|
178 |
+
def extract_feature(self, pixel_values):
|
179 |
+
if self.select_layer == -1:
|
180 |
+
vit_embeds = self.vision_model(
|
181 |
+
pixel_values=pixel_values,
|
182 |
+
output_hidden_states=False,
|
183 |
+
return_dict=True).last_hidden_state
|
184 |
+
else:
|
185 |
+
vit_embeds = self.vision_model(
|
186 |
+
pixel_values=pixel_values,
|
187 |
+
output_hidden_states=True,
|
188 |
+
return_dict=True).hidden_states[self.select_layer]
|
189 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
190 |
+
|
191 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
192 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
193 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
194 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
195 |
+
vit_embeds = self.mlp1(vit_embeds)
|
196 |
+
return vit_embeds
|
197 |
+
|
198 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
199 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
200 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
201 |
+
if history is not None or return_history:
|
202 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
203 |
+
raise NotImplementedError
|
204 |
+
|
205 |
+
if image_counts is not None:
|
206 |
+
num_patches_list = image_counts
|
207 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
208 |
+
|
209 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
210 |
+
self.img_context_token_id = img_context_token_id
|
211 |
+
|
212 |
+
if verbose and pixel_values is not None:
|
213 |
+
image_bs = pixel_values.shape[0]
|
214 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
215 |
+
|
216 |
+
queries = []
|
217 |
+
for idx, num_patches in enumerate(num_patches_list):
|
218 |
+
question = questions[idx]
|
219 |
+
if pixel_values is not None and '<image>' not in question:
|
220 |
+
question = '<image>\n' + question
|
221 |
+
template = get_conv_template(self.template)
|
222 |
+
template.append_message(template.roles[0], question)
|
223 |
+
template.append_message(template.roles[1], None)
|
224 |
+
query = template.get_prompt()
|
225 |
+
|
226 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
227 |
+
query = query.replace('<image>', image_tokens, 1)
|
228 |
+
queries.append(query)
|
229 |
+
|
230 |
+
tokenizer.padding_side = 'left'
|
231 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
232 |
+
input_ids = model_inputs['input_ids'].cuda()
|
233 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
234 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
235 |
+
generation_config['eos_token_id'] = eos_token_id
|
236 |
+
generation_output = self.generate(
|
237 |
+
pixel_values=pixel_values,
|
238 |
+
input_ids=input_ids,
|
239 |
+
attention_mask=attention_mask,
|
240 |
+
**generation_config
|
241 |
+
)
|
242 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
243 |
+
responses = [response.split(template.sep)[0].strip() for response in responses]
|
244 |
+
return responses
|
245 |
+
|
246 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
247 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
248 |
+
verbose=False):
|
249 |
+
|
250 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
251 |
+
question = '<image>\n' + question
|
252 |
+
|
253 |
+
if num_patches_list is None:
|
254 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
255 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
256 |
+
|
257 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
258 |
+
self.img_context_token_id = img_context_token_id
|
259 |
+
|
260 |
+
template = get_conv_template(self.template)
|
261 |
+
template.system_message = self.system_message
|
262 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
263 |
+
|
264 |
+
history = [] if history is None else history
|
265 |
+
for (old_question, old_answer) in history:
|
266 |
+
template.append_message(template.roles[0], old_question)
|
267 |
+
template.append_message(template.roles[1], old_answer)
|
268 |
+
template.append_message(template.roles[0], question)
|
269 |
+
template.append_message(template.roles[1], None)
|
270 |
+
query = template.get_prompt()
|
271 |
+
|
272 |
+
if verbose and pixel_values is not None:
|
273 |
+
image_bs = pixel_values.shape[0]
|
274 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
275 |
+
|
276 |
+
for num_patches in num_patches_list:
|
277 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
278 |
+
query = query.replace('<image>', image_tokens, 1)
|
279 |
+
|
280 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
281 |
+
input_ids = model_inputs['input_ids'].cuda()
|
282 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
283 |
+
generation_config['eos_token_id'] = eos_token_id
|
284 |
+
generation_output = self.generate(
|
285 |
+
pixel_values=pixel_values,
|
286 |
+
input_ids=input_ids,
|
287 |
+
attention_mask=attention_mask,
|
288 |
+
**generation_config
|
289 |
+
)
|
290 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
291 |
+
response = response.split(template.sep)[0].strip()
|
292 |
+
history.append((question, response))
|
293 |
+
if return_history:
|
294 |
+
return response, history
|
295 |
+
else:
|
296 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
297 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
298 |
+
if verbose:
|
299 |
+
print(query_to_print, response)
|
300 |
+
return response
|
301 |
+
|
302 |
+
@torch.no_grad()
|
303 |
+
def generate(
|
304 |
+
self,
|
305 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
306 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
307 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
308 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
309 |
+
generation_config: Optional[GenerationConfig] = None,
|
310 |
+
output_hidden_states: Optional[bool] = None,
|
311 |
+
return_dict: Optional[bool] = None,
|
312 |
+
**generate_kwargs,
|
313 |
+
) -> torch.LongTensor:
|
314 |
+
|
315 |
+
assert self.img_context_token_id is not None
|
316 |
+
if pixel_values is not None:
|
317 |
+
if visual_features is not None:
|
318 |
+
vit_embeds = visual_features
|
319 |
+
else:
|
320 |
+
vit_embeds = self.extract_feature(pixel_values)
|
321 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
322 |
+
B, N, C = input_embeds.shape
|
323 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
324 |
+
|
325 |
+
input_ids = input_ids.reshape(B * N)
|
326 |
+
selected = (input_ids == self.img_context_token_id)
|
327 |
+
assert selected.sum() != 0
|
328 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
329 |
+
|
330 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
331 |
+
else:
|
332 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
333 |
+
|
334 |
+
outputs = self.language_model.generate(
|
335 |
+
inputs_embeds=input_embeds,
|
336 |
+
attention_mask=attention_mask,
|
337 |
+
generation_config=generation_config,
|
338 |
+
output_hidden_states=output_hidden_states,
|
339 |
+
return_dict=return_dict,
|
340 |
+
use_cache=True,
|
341 |
+
**generate_kwargs,
|
342 |
+
)
|
343 |
+
|
344 |
+
return outputs
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<img>",
|
6 |
+
"</img>",
|
7 |
+
"<IMG_CONTEXT>",
|
8 |
+
"<quad>",
|
9 |
+
"</quad>",
|
10 |
+
"<ref>",
|
11 |
+
"</ref>",
|
12 |
+
"<box>",
|
13 |
+
"</box>"
|
14 |
+
],
|
15 |
+
"eos_token": {
|
16 |
+
"content": "<|im_end|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": {
|
23 |
+
"content": "<|endoftext|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<img>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "</img>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<IMG_CONTEXT>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<quad>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "</quad>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<ref>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "</ref>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<box>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "</box>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"additional_special_tokens": [
|
103 |
+
"<|im_start|>",
|
104 |
+
"<|im_end|>",
|
105 |
+
"<img>",
|
106 |
+
"</img>",
|
107 |
+
"<IMG_CONTEXT>",
|
108 |
+
"<quad>",
|
109 |
+
"</quad>",
|
110 |
+
"<ref>",
|
111 |
+
"</ref>",
|
112 |
+
"<box>",
|
113 |
+
"</box>"
|
114 |
+
],
|
115 |
+
"bos_token": null,
|
116 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
117 |
+
"clean_up_tokenization_spaces": false,
|
118 |
+
"eos_token": "<|im_end|>",
|
119 |
+
"errors": "replace",
|
120 |
+
"model_max_length": 4096,
|
121 |
+
"pad_token": "<|endoftext|>",
|
122 |
+
"split_special_tokens": false,
|
123 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
124 |
+
"unk_token": null
|
125 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|