--- license: cc-by-nc-4.0 datasets: - turing-motors/LLaVA-Pretrain-JA - turing-motors/LLaVA-v1.5-Instruct-620K-JA language: - ja pipeline_tag: image-to-text tags: - vision - image-captioning - VQA --- # ConvLLaVA-JP Model Card ## Model detail **Model type:** ConvLLaVA-JP is a vision-language model that can converse about input images.
This model is an LVLM model trained using [laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft) as the image encoder and [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) as the text decoder. Input of 1280 x 1280 high resolution. **Training:** This model was initially trained with Vision Projector and Stage 5 using LLaVA-Pretrain-JA.
In the second phase, it was trained Image Encoder, Vision Projector, Stage 5 and LLM using LLaVA-Pretrain-JA.
In the third phase, it was fine-tuned with Vision Projector and LLM using LLaVA-v1.5-Instruct-620K-JA. resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main **Comparing VLMs** |Model|JA-VG-VQA-500
(ROUGE-L)|JA-VLM-Bench-In-the-Wild
(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average) |-|-|-|-|-|-|-| |[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07| |[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07| |[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44| |[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83| |[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|**51.21**|41.05|45.95|44.84| |[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**| |[ConvLLaVA-JP-1.3b-768](https://huggingface.co/toshi456/ConvLLaVA-JP-1.3b-768)|12.05|42.80|44.24|40.00|48.16|44.96| |[ConvLLaVA-JP-1.3b-1280](https://huggingface.co/toshi456/ConvLLaVA-JP-1.3b-1280)|11.88|43.64|38.95|44.79|41.24|42.31| ## How to use the model **1. Download dependencies** ``` git clone https://github.com/tosiyuki/LLaVA-JP.git ``` **2. Inference** ```python import requests import torch import transformers from PIL import Image from transformers.generation.streamers import TextStreamer from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX from llava.conversation import conv_templates, SeparatorStyle from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM from llava.train.dataset import tokenizer_image_token if __name__ == "__main__": model_path = 'toshi456/ConvLLaVA-JP-1.3b-1280' device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 model = LlavaGpt2ForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, use_safetensors=True, torch_dtype=torch_dtype, device_map=device, ) tokenizer = transformers.AutoTokenizer.from_pretrained( model_path, model_max_length=1532, padding_side="right", use_fast=False, ) model.eval() conv_mode = "v1" conv = conv_templates[conv_mode].copy() # image pre-process image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') if device == "cuda": image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).half().cuda().to(torch_dtype) else: image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).to(torch_dtype) # create prompt # ユーザー: \n{prompt} prompt = "猫の隣には何がありますか?" inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token( prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt' ).unsqueeze(0) if device == "cuda": input_ids = input_ids.to(device) input_ids = input_ids[:, :-1] # がinputの最後に入るので削除する stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0) # predict with torch.inference_mode(): output_id = model.generate( inputs=input_ids, images=image_tensor, do_sample=False, temperature=1.0, top_p=1.0, max_new_tokens=256, streamer=streamer, use_cache=True, ) """猫の隣にはノートパソコンがあります。""" ``` ## Training dataset **Stage1 and Stage2 Pretrain** - [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA) **Stage3 Fine-tuning** - [LLaVA-v1.5-Instruct-620K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-v1.5-Instruct-620K-JA) ## Acknowledgement - [ConvLLaVA](https://arxiv.org/abs/2405.15738) - [LLM-jp](https://llm-jp.nii.ac.jp/) - [Open CLIP](https://github.com/mlfoundations/open_clip) ## License cc-by-nc-4.0