Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,147 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-nc-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
datasets:
|
4 |
+
- turing-motors/LLaVA-Pretrain-JA
|
5 |
+
- turing-motors/LLaVA-v1.5-Instruct-620K-JA
|
6 |
+
language:
|
7 |
+
- ja
|
8 |
+
pipeline_tag: image-to-text
|
9 |
+
tags:
|
10 |
+
- vision
|
11 |
+
- image-captioning
|
12 |
+
- VQA
|
13 |
+
---
|
14 |
+
|
15 |
+
# ConvLLaVA-JP Model Card
|
16 |
+
|
17 |
+
## Model detail
|
18 |
+
|
19 |
+
**Model type:**
|
20 |
+
|
21 |
+
ConvLLaVA-JP is a vision-language model that can converse about input images.<br>
|
22 |
+
This model is an LVLM model trained using [laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft](https://huggingface.co/laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft) as the image encoder and [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) as the text decoder. Input of 1280 x 1280 high resolution.
|
23 |
+
|
24 |
+
**Training:**
|
25 |
+
|
26 |
+
This model was initially trained with Vision Projector and Stage 5 using LLaVA-Pretrain-JA.<br>
|
27 |
+
In the second phase, it was trained Image Encoder, Vision Projector, Stage 5 and LLM using LLaVA-Pretrain-JA.<br>
|
28 |
+
In the third phase, it was fine-tuned with Vision Projector and LLM using LLaVA-v1.5-Instruct-620K-JA.
|
29 |
+
|
30 |
+
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
|
31 |
+
|
32 |
+
**Comparing VLMs**
|
33 |
+
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|
34 |
+
|-|-|-|-|-|-|-|
|
35 |
+
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|
36 |
+
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|
37 |
+
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|
38 |
+
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|
39 |
+
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|**51.21**|41.05|45.95|44.84|
|
40 |
+
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|
|
41 |
+
|[ConvLLaVA-JP-1.3b-768](https://huggingface.co/toshi456/ConvLLaVA-JP-1.3b-768)|12.05|42.80|44.24|40.00|48.16|44.96|
|
42 |
+
|[ConvLLaVA-JP-1.3b-1280](https://huggingface.co/toshi456/ConvLLaVA-JP-1.3b-1280)|11.88|43.64|38.95|44.79|41.24|42.31|
|
43 |
+
|
44 |
+
## How to use the model
|
45 |
+
**1. Download dependencies**
|
46 |
+
```
|
47 |
+
git clone https://github.com/tosiyuki/LLaVA-JP.git
|
48 |
+
```
|
49 |
+
|
50 |
+
**2. Inference**
|
51 |
+
```python
|
52 |
+
import requests
|
53 |
+
import torch
|
54 |
+
import transformers
|
55 |
+
from PIL import Image
|
56 |
+
|
57 |
+
from transformers.generation.streamers import TextStreamer
|
58 |
+
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
59 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
60 |
+
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
|
61 |
+
from llava.train.dataset import tokenizer_image_token
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
model_path = 'toshi456/ConvLLaVA-JP-1.3b-1280'
|
66 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
67 |
+
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
68 |
+
|
69 |
+
model = LlavaGpt2ForCausalLM.from_pretrained(
|
70 |
+
model_path,
|
71 |
+
low_cpu_mem_usage=True,
|
72 |
+
use_safetensors=True,
|
73 |
+
torch_dtype=torch_dtype,
|
74 |
+
device_map=device,
|
75 |
+
)
|
76 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
77 |
+
model_path,
|
78 |
+
model_max_length=1532,
|
79 |
+
padding_side="right",
|
80 |
+
use_fast=False,
|
81 |
+
)
|
82 |
+
model.eval()
|
83 |
+
|
84 |
+
conv_mode = "v1"
|
85 |
+
conv = conv_templates[conv_mode].copy()
|
86 |
+
|
87 |
+
# image pre-process
|
88 |
+
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
|
89 |
+
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
|
90 |
+
|
91 |
+
if device == "cuda":
|
92 |
+
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).half().cuda().to(torch_dtype)
|
93 |
+
else:
|
94 |
+
image_tensor = model.get_model().vision_tower.image_processor(image).unsqueeze(0).to(torch_dtype)
|
95 |
+
|
96 |
+
# create prompt
|
97 |
+
# ユーザー: <image>\n{prompt}
|
98 |
+
prompt = "猫の隣には何がありますか?"
|
99 |
+
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
100 |
+
conv.append_message(conv.roles[0], inp)
|
101 |
+
conv.append_message(conv.roles[1], None)
|
102 |
+
prompt = conv.get_prompt()
|
103 |
+
|
104 |
+
input_ids = tokenizer_image_token(
|
105 |
+
prompt,
|
106 |
+
tokenizer,
|
107 |
+
IMAGE_TOKEN_INDEX,
|
108 |
+
return_tensors='pt'
|
109 |
+
).unsqueeze(0)
|
110 |
+
if device == "cuda":
|
111 |
+
input_ids = input_ids.to(device)
|
112 |
+
|
113 |
+
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
|
114 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
115 |
+
keywords = [stop_str]
|
116 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
|
117 |
+
|
118 |
+
# predict
|
119 |
+
with torch.inference_mode():
|
120 |
+
output_id = model.generate(
|
121 |
+
inputs=input_ids,
|
122 |
+
images=image_tensor,
|
123 |
+
do_sample=False,
|
124 |
+
temperature=1.0,
|
125 |
+
top_p=1.0,
|
126 |
+
max_new_tokens=256,
|
127 |
+
streamer=streamer,
|
128 |
+
use_cache=True,
|
129 |
+
)
|
130 |
+
"""猫の隣にはノートパソコンがあります。"""
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Training dataset
|
135 |
+
**Stage1 and Stage2 Pretrain**
|
136 |
+
- [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA)
|
137 |
+
|
138 |
+
**Stage3 Fine-tuning**
|
139 |
+
- [LLaVA-v1.5-Instruct-620K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-v1.5-Instruct-620K-JA)
|
140 |
+
|
141 |
+
## Acknowledgement
|
142 |
+
- [ConvLLaVA](https://arxiv.org/abs/2405.15738)
|
143 |
+
- [LLM-jp](https://llm-jp.nii.ac.jp/)
|
144 |
+
- [Open CLIP](https://github.com/mlfoundations/open_clip)
|
145 |
+
|
146 |
+
## License
|
147 |
+
cc-by-nc-4.0
|