Upload model
Browse files- README.md +343 -59
- config.json +3 -4
- pytorch_model.bin +2 -2
- tokenizer.json +2 -2
- tokenizer_config.json +3 -1
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
-
|
2 |
---
|
|
|
|
|
|
|
3 |
license: cc-by-sa-4.0
|
4 |
library_name: span-marker
|
5 |
tags:
|
@@ -7,71 +9,231 @@ tags:
|
|
7 |
- token-classification
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
-
|
11 |
-
widget:
|
12 |
-
- text: "Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico hasta París ."
|
13 |
-
example_title: "Spanish"
|
14 |
-
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris ."
|
15 |
-
example_title: "English"
|
16 |
-
- text: "Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l'ocean Atlantique jusqu'à Paris ."
|
17 |
-
example_title: "French"
|
18 |
-
- text: "Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik nach Paris ."
|
19 |
-
example_title: "German"
|
20 |
-
- text: "Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B через Атлантический океан в Париж ."
|
21 |
-
example_title: "Russian"
|
22 |
-
- text: "Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische Oceaan naar Parijs ."
|
23 |
-
example_title: "Dutch"
|
24 |
-
- text: "Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega 5B przez Ocean Atlantycki do Paryża ."
|
25 |
-
example_title: "Polish"
|
26 |
-
- text: "Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til Parísar ."
|
27 |
-
example_title: "Icelandic"
|
28 |
-
- text: "Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα από τον Ατλαντικό Ωκεανό στο Παρίσι ."
|
29 |
-
example_title: "Greek"
|
30 |
-
model-index:
|
31 |
-
- name: SpanMarker w. roberta-base on finegrained, supervised FewNERD by Tom Aarsen
|
32 |
-
results:
|
33 |
-
- task:
|
34 |
-
type: token-classification
|
35 |
-
name: Named Entity Recognition
|
36 |
-
dataset:
|
37 |
-
type: DFKI-SLT/few-nerd
|
38 |
-
name: finegrained, supervised FewNERD
|
39 |
-
config: supervised
|
40 |
-
split: test
|
41 |
-
revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
|
42 |
-
metrics:
|
43 |
-
- type: f1
|
44 |
-
value: 0.6860
|
45 |
-
name: F1
|
46 |
-
- type: precision
|
47 |
-
value: 0.6847
|
48 |
-
name: Precision
|
49 |
-
- type: recall
|
50 |
-
value: 0.6873
|
51 |
-
name: Recall
|
52 |
datasets:
|
53 |
-
|
54 |
-
language:
|
55 |
-
- multilingual
|
56 |
metrics:
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
---
|
61 |
|
62 |
-
# SpanMarker
|
63 |
|
64 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
65 |
|
66 |
-
##
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
```python
|
77 |
from span_marker import SpanMarkerModel
|
@@ -79,7 +241,129 @@ from span_marker import SpanMarkerModel
|
|
79 |
# Download from the 🤗 Hub
|
80 |
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super")
|
81 |
# Run inference
|
82 |
-
entities = model.predict("
|
83 |
```
|
84 |
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- multilingual
|
5 |
license: cc-by-sa-4.0
|
6 |
library_name: span-marker
|
7 |
tags:
|
|
|
9 |
- token-classification
|
10 |
- ner
|
11 |
- named-entity-recognition
|
12 |
+
- generated_from_span_marker_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
datasets:
|
14 |
+
- DFKI-SLT/few-nerd
|
|
|
|
|
15 |
metrics:
|
16 |
+
- precision
|
17 |
+
- recall
|
18 |
+
- f1
|
19 |
+
widget:
|
20 |
+
- text: The WPC led the international peace movement in the decade after the Second
|
21 |
+
World War, but its failure to speak out against the Soviet suppression of the
|
22 |
+
1956 Hungarian uprising and the resumption of Soviet nuclear tests in 1961 marginalised
|
23 |
+
it, and in the 1960s it was eclipsed by the newer, non-aligned peace organizations
|
24 |
+
like the Campaign for Nuclear Disarmament.
|
25 |
+
- text: Most of the Steven Seagal movie "Under Siege "(co-starring Tommy Lee Jones)
|
26 |
+
was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and
|
27 |
+
open to the public.
|
28 |
+
- text: 'The Central African CFA franc (French: "franc CFA "or simply "franc ", ISO
|
29 |
+
4217 code: XAF) is the currency of six independent states in Central Africa: Cameroon,
|
30 |
+
Central African Republic, Chad, Republic of the Congo, Equatorial Guinea and Gabon.'
|
31 |
+
- text: Brenner conducted post-doctoral research at Brandeis University with Gregory
|
32 |
+
Petsko and then took his first academic position at Thomas Jefferson University
|
33 |
+
in 1996, moving to Dartmouth Medical School in 2003, where he served as Associate
|
34 |
+
Director for Basic Sciences at Norris Cotton Cancer Center.
|
35 |
+
- text: On Friday, October 27, 2017, the Senate of Spain (Senado) voted 214 to 47
|
36 |
+
to invoke Article 155 of the Spanish Constitution over Catalonia after the Catalan
|
37 |
+
Parliament declared the independence.
|
38 |
+
pipeline_tag: token-classification
|
39 |
+
co2_eq_emissions:
|
40 |
+
emissions: 452.84872035276965
|
41 |
+
source: codecarbon
|
42 |
+
training_type: fine-tuning
|
43 |
+
on_cloud: false
|
44 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
45 |
+
ram_total_size: 31.777088165283203
|
46 |
+
hours_used: 3.118
|
47 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
48 |
+
base_model: xlm-roberta-base
|
49 |
+
model-index:
|
50 |
+
- name: SpanMarker with xlm-roberta-base on FewNERD
|
51 |
+
results:
|
52 |
+
- task:
|
53 |
+
type: token-classification
|
54 |
+
name: Named Entity Recognition
|
55 |
+
dataset:
|
56 |
+
name: FewNERD
|
57 |
+
type: DFKI-SLT/few-nerd
|
58 |
+
split: test
|
59 |
+
metrics:
|
60 |
+
- type: f1
|
61 |
+
value: 0.6884821229658107
|
62 |
+
name: F1
|
63 |
+
- type: precision
|
64 |
+
value: 0.6890426017339362
|
65 |
+
name: Precision
|
66 |
+
- type: recall
|
67 |
+
value: 0.6879225552622042
|
68 |
+
name: Recall
|
69 |
---
|
70 |
|
71 |
+
# SpanMarker with xlm-roberta-base on FewNERD
|
72 |
|
73 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) as the underlying encoder.
|
74 |
|
75 |
+
## Model Details
|
76 |
|
77 |
+
### Model Description
|
78 |
+
- **Model Type:** SpanMarker
|
79 |
+
- **Encoder:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base)
|
80 |
+
- **Maximum Sequence Length:** 256 tokens
|
81 |
+
- **Maximum Entity Length:** 8 words
|
82 |
+
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
|
83 |
+
- **Languages:** en, multilingual
|
84 |
+
- **License:** cc-by-sa-4.0
|
85 |
|
86 |
+
### Model Sources
|
87 |
+
|
88 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
89 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
90 |
+
|
91 |
+
### Model Labels
|
92 |
+
| Label | Examples |
|
93 |
+
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
|
94 |
+
| art-broadcastprogram | "The Gale Storm Show : Oh , Susanna", "Corazones", "Street Cents" |
|
95 |
+
| art-film | "L'Atlantide", "Shawshank Redemption", "Bosch" |
|
96 |
+
| art-music | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover" |
|
97 |
+
| art-other | "Venus de Milo", "Aphrodite of Milos", "The Today Show" |
|
98 |
+
| art-painting | "Cofiwch Dryweryn", "Production/Reproduction", "Touit" |
|
99 |
+
| art-writtenart | "The Seven Year Itch", "Time", "Imelda de ' Lambertazzi" |
|
100 |
+
| building-airport | "Newark Liberty International Airport", "Luton Airport", "Sheremetyevo International Airport" |
|
101 |
+
| building-hospital | "Hokkaido University Hospital", "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center" |
|
102 |
+
| building-hotel | "Radisson Blu Sea Plaza Hotel", "The Standard Hotel", "Flamingo Hotel" |
|
103 |
+
| building-library | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek" |
|
104 |
+
| building-other | "Communiplex", "Henry Ford Museum", "Alpha Recording Studios" |
|
105 |
+
| building-restaurant | "Fatburger", "Carnegie Deli", "Trumbull" |
|
106 |
+
| building-sportsfacility | "Boston Garden", "Glenn Warner Soccer Facility", "Sports Center" |
|
107 |
+
| building-theater | "Pittsburgh Civic Light Opera", "National Paris Opera", "Sanders Theatre" |
|
108 |
+
| event-attack/battle/war/militaryconflict | "Jurist", "Easter Offensive", "Vietnam War" |
|
109 |
+
| event-disaster | "1693 Sicily earthquake", "1990s North Korean famine", "the 1912 North Mount Lyell Disaster" |
|
110 |
+
| event-election | "March 1898 elections", "Elections to the European Parliament", "1982 Mitcham and Morden by-election" |
|
111 |
+
| event-other | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement" |
|
112 |
+
| event-protest | "Russian Revolution", "French Revolution", "Iranian Constitutional Revolution" |
|
113 |
+
| event-sportsevent | "World Cup", "Stanley Cup", "National Champions" |
|
114 |
+
| location-GPE | "Mediterranean Basin", "Croatian", "the Republic of Croatia" |
|
115 |
+
| location-bodiesofwater | "Norfolk coast", "Atatürk Dam Lake", "Arthur Kill" |
|
116 |
+
| location-island | "Laccadives", "Staten Island", "new Samsat district" |
|
117 |
+
| location-mountain | "Ruweisat Ridge", "Miteirya Ridge", "Salamander Glacier" |
|
118 |
+
| location-other | "Victoria line", "Northern City Line", "Cartuther" |
|
119 |
+
| location-park | "Painted Desert Community Complex Historic District", "Shenandoah National Park", "Gramercy Park" |
|
120 |
+
| location-road/railway/highway/transit | "Newark-Elizabeth Rail Link", "NJT", "Friern Barnet Road" |
|
121 |
+
| organization-company | "Church 's Chicken", "Texas Chicken", "Dixy Chicken" |
|
122 |
+
| organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
|
123 |
+
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
|
124 |
+
| organization-media/newspaper | "TimeOut Melbourne", "Al Jazeera", "Clash" |
|
125 |
+
| organization-other | "IAEA", "4th Army", "Defence Sector C" |
|
126 |
+
| organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
|
127 |
+
| organization-religion | "UPCUSA", "Jewish", "Christian" |
|
128 |
+
| organization-showorganization | "Bochumer Symphoniker", "Mr. Mister", "Lizzy" |
|
129 |
+
| organization-sportsleague | "First Division", "NHL", "China League One" |
|
130 |
+
| organization-sportsteam | "Tottenham", "Arsenal", "Luc Alphand Aventures" |
|
131 |
+
| other-astronomything | "Algol", "Zodiac", "`` Caput Larvae ''" |
|
132 |
+
| other-award | "Grand Commander of the Order of the Niger", "Order of the Republic of Guinea and Nigeria", "GCON" |
|
133 |
+
| other-biologything | "Amphiphysin", "BAR", "N-terminal lipid" |
|
134 |
+
| other-chemicalthing | "carbon dioxide", "sulfur", "uranium" |
|
135 |
+
| other-currency | "$", "lac crore", "Travancore Rupee" |
|
136 |
+
| other-disease | "hypothyroidism", "bladder cancer", "French Dysentery Epidemic of 1779" |
|
137 |
+
| other-educationaldegree | "Master", "Bachelor", "BSc ( Hons ) in physics" |
|
138 |
+
| other-god | "El", "Fujin", "Raijin" |
|
139 |
+
| other-language | "Breton-speaking", "Latin", "English" |
|
140 |
+
| other-law | "United States Freedom Support Act", "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA" |
|
141 |
+
| other-livingthing | "insects", "patchouli", "monkeys" |
|
142 |
+
| other-medical | "amitriptyline", "pediatrician", "Pediatrics" |
|
143 |
+
| person-actor | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss" |
|
144 |
+
| person-artist/author | "George Axelrod", "Hicks", "Gaetano Donizett" |
|
145 |
+
| person-athlete | "Jaguar", "Neville", "Tozawa" |
|
146 |
+
| person-director | "Richard Quine", "Frank Darabont", "Bob Swaim" |
|
147 |
+
| person-other | "Campbell", "Richard Benson", "Holden" |
|
148 |
+
| person-politician | "Rivière", "Emeric", "William" |
|
149 |
+
| person-scholar | "Stedman", "Wurdack", "Stalmine" |
|
150 |
+
| person-soldier | "Joachim Ziegler", "Krukenberg", "Helmuth Weidling" |
|
151 |
+
| product-airplane | "EC135T2 CPDS", "Spey-equipped FGR.2s", "Luton" |
|
152 |
+
| product-car | "Phantom", "Corvettes - GT1 C6R", "100EX" |
|
153 |
+
| product-food | "V. labrusca", "red grape", "yakiniku" |
|
154 |
+
| product-game | "Hardcore RPG", "Airforce Delta", "Splinter Cell" |
|
155 |
+
| product-other | "PDP-1", "Fairbottom Bobs", "X11" |
|
156 |
+
| product-ship | "Essex", "Congress", "HMS `` Chinkara ''" |
|
157 |
+
| product-software | "Wikipedia", "Apdf", "AmiPDF" |
|
158 |
+
| product-train | "55022", "Royal Scots Grey", "High Speed Trains" |
|
159 |
+
| product-weapon | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel" |
|
160 |
|
161 |
+
## Evaluation
|
162 |
+
|
163 |
+
### Metrics
|
164 |
+
| Label | Precision | Recall | F1 |
|
165 |
+
|:-----------------------------------------|:----------|:-------|:-------|
|
166 |
+
| **all** | 0.6890 | 0.6879 | 0.6885 |
|
167 |
+
| art-broadcastprogram | 0.6 | 0.5771 | 0.5883 |
|
168 |
+
| art-film | 0.7384 | 0.7453 | 0.7419 |
|
169 |
+
| art-music | 0.7930 | 0.7221 | 0.7558 |
|
170 |
+
| art-other | 0.4245 | 0.2900 | 0.3446 |
|
171 |
+
| art-painting | 0.5476 | 0.4035 | 0.4646 |
|
172 |
+
| art-writtenart | 0.6400 | 0.6539 | 0.6469 |
|
173 |
+
| building-airport | 0.8219 | 0.8242 | 0.8230 |
|
174 |
+
| building-hospital | 0.7024 | 0.8104 | 0.7526 |
|
175 |
+
| building-hotel | 0.7175 | 0.7283 | 0.7228 |
|
176 |
+
| building-library | 0.74 | 0.7296 | 0.7348 |
|
177 |
+
| building-other | 0.5828 | 0.5910 | 0.5869 |
|
178 |
+
| building-restaurant | 0.5525 | 0.5216 | 0.5366 |
|
179 |
+
| building-sportsfacility | 0.6187 | 0.7881 | 0.6932 |
|
180 |
+
| building-theater | 0.7067 | 0.7626 | 0.7336 |
|
181 |
+
| event-attack/battle/war/militaryconflict | 0.7544 | 0.7468 | 0.7506 |
|
182 |
+
| event-disaster | 0.5882 | 0.5314 | 0.5584 |
|
183 |
+
| event-election | 0.4167 | 0.2198 | 0.2878 |
|
184 |
+
| event-other | 0.4902 | 0.4042 | 0.4430 |
|
185 |
+
| event-protest | 0.3643 | 0.2831 | 0.3186 |
|
186 |
+
| event-sportsevent | 0.6125 | 0.6239 | 0.6182 |
|
187 |
+
| location-GPE | 0.8102 | 0.8553 | 0.8321 |
|
188 |
+
| location-bodiesofwater | 0.6888 | 0.7725 | 0.7282 |
|
189 |
+
| location-island | 0.7285 | 0.6440 | 0.6836 |
|
190 |
+
| location-mountain | 0.7129 | 0.7327 | 0.7227 |
|
191 |
+
| location-other | 0.4376 | 0.2560 | 0.3231 |
|
192 |
+
| location-park | 0.6991 | 0.6900 | 0.6945 |
|
193 |
+
| location-road/railway/highway/transit | 0.6936 | 0.7259 | 0.7094 |
|
194 |
+
| organization-company | 0.6921 | 0.6912 | 0.6917 |
|
195 |
+
| organization-education | 0.7838 | 0.7963 | 0.7900 |
|
196 |
+
| organization-government/governmentagency | 0.5363 | 0.4394 | 0.4831 |
|
197 |
+
| organization-media/newspaper | 0.6215 | 0.6705 | 0.6451 |
|
198 |
+
| organization-other | 0.5766 | 0.5157 | 0.5444 |
|
199 |
+
| organization-politicalparty | 0.6449 | 0.7324 | 0.6859 |
|
200 |
+
| organization-religion | 0.5139 | 0.6057 | 0.5560 |
|
201 |
+
| organization-showorganization | 0.5620 | 0.5657 | 0.5638 |
|
202 |
+
| organization-sportsleague | 0.6348 | 0.6542 | 0.6443 |
|
203 |
+
| organization-sportsteam | 0.7138 | 0.7566 | 0.7346 |
|
204 |
+
| other-astronomything | 0.7418 | 0.7625 | 0.752 |
|
205 |
+
| other-award | 0.7291 | 0.6736 | 0.7002 |
|
206 |
+
| other-biologything | 0.6735 | 0.6275 | 0.6497 |
|
207 |
+
| other-chemicalthing | 0.6025 | 0.5651 | 0.5832 |
|
208 |
+
| other-currency | 0.6843 | 0.8411 | 0.7546 |
|
209 |
+
| other-disease | 0.6284 | 0.7089 | 0.6662 |
|
210 |
+
| other-educationaldegree | 0.5856 | 0.6033 | 0.5943 |
|
211 |
+
| other-god | 0.6089 | 0.6913 | 0.6475 |
|
212 |
+
| other-language | 0.6608 | 0.7968 | 0.7225 |
|
213 |
+
| other-law | 0.6693 | 0.7246 | 0.6958 |
|
214 |
+
| other-livingthing | 0.6070 | 0.6014 | 0.6042 |
|
215 |
+
| other-medical | 0.5062 | 0.5113 | 0.5088 |
|
216 |
+
| person-actor | 0.8274 | 0.7673 | 0.7962 |
|
217 |
+
| person-artist/author | 0.6761 | 0.7294 | 0.7018 |
|
218 |
+
| person-athlete | 0.8132 | 0.8347 | 0.8238 |
|
219 |
+
| person-director | 0.675 | 0.6823 | 0.6786 |
|
220 |
+
| person-other | 0.6472 | 0.6388 | 0.6429 |
|
221 |
+
| person-politician | 0.6621 | 0.6593 | 0.6607 |
|
222 |
+
| person-scholar | 0.5181 | 0.5007 | 0.5092 |
|
223 |
+
| person-soldier | 0.4750 | 0.5131 | 0.4933 |
|
224 |
+
| product-airplane | 0.6230 | 0.6717 | 0.6464 |
|
225 |
+
| product-car | 0.7293 | 0.7176 | 0.7234 |
|
226 |
+
| product-food | 0.5758 | 0.5185 | 0.5457 |
|
227 |
+
| product-game | 0.7049 | 0.6734 | 0.6888 |
|
228 |
+
| product-other | 0.5477 | 0.4067 | 0.4668 |
|
229 |
+
| product-ship | 0.6247 | 0.6395 | 0.6320 |
|
230 |
+
| product-software | 0.6497 | 0.6760 | 0.6626 |
|
231 |
+
| product-train | 0.5505 | 0.5732 | 0.5616 |
|
232 |
+
| product-weapon | 0.6004 | 0.4744 | 0.5300 |
|
233 |
+
|
234 |
+
## Uses
|
235 |
+
|
236 |
+
### Direct Use for Inference
|
237 |
|
238 |
```python
|
239 |
from span_marker import SpanMarkerModel
|
|
|
241 |
# Download from the 🤗 Hub
|
242 |
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super")
|
243 |
# Run inference
|
244 |
+
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
|
245 |
```
|
246 |
|
247 |
+
### Downstream Use
|
248 |
+
You can finetune this model on your own dataset.
|
249 |
+
|
250 |
+
<details><summary>Click to expand</summary>
|
251 |
+
|
252 |
+
```python
|
253 |
+
from span_marker import SpanMarkerModel, Trainer
|
254 |
+
|
255 |
+
# Download from the 🤗 Hub
|
256 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super")
|
257 |
+
|
258 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
259 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
260 |
+
|
261 |
+
# Initialize a Trainer using the pretrained model & dataset
|
262 |
+
trainer = Trainer(
|
263 |
+
model=model,
|
264 |
+
train_dataset=dataset["train"],
|
265 |
+
eval_dataset=dataset["validation"],
|
266 |
+
)
|
267 |
+
trainer.train()
|
268 |
+
trainer.save_model("tomaarsen/span-marker-xlm-roberta-base-fewnerd-fine-super-finetuned")
|
269 |
+
```
|
270 |
+
</details>
|
271 |
+
|
272 |
+
<!--
|
273 |
+
### Out-of-Scope Use
|
274 |
+
|
275 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
276 |
+
-->
|
277 |
+
|
278 |
+
<!--
|
279 |
+
## Bias, Risks and Limitations
|
280 |
+
|
281 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
282 |
+
-->
|
283 |
+
|
284 |
+
<!--
|
285 |
+
### Recommendations
|
286 |
+
|
287 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
288 |
+
-->
|
289 |
+
|
290 |
+
## Training Details
|
291 |
+
|
292 |
+
### Training Set Metrics
|
293 |
+
| Training set | Min | Median | Max |
|
294 |
+
|:----------------------|:----|:--------|:----|
|
295 |
+
| Sentence length | 1 | 24.4945 | 267 |
|
296 |
+
| Entities per sentence | 0 | 2.5832 | 88 |
|
297 |
+
|
298 |
+
### Training Hyperparameters
|
299 |
+
- learning_rate: 1e-05
|
300 |
+
- train_batch_size: 16
|
301 |
+
- eval_batch_size: 16
|
302 |
+
- seed: 42
|
303 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
304 |
+
- lr_scheduler_type: linear
|
305 |
+
- lr_scheduler_warmup_ratio: 0.1
|
306 |
+
- num_epochs: 3
|
307 |
+
|
308 |
+
### Training Results
|
309 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
310 |
+
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
311 |
+
| 0.2947 | 3000 | 0.0318 | 0.6058 | 0.5990 | 0.6024 | 0.9020 |
|
312 |
+
| 0.5893 | 6000 | 0.0266 | 0.6556 | 0.6679 | 0.6617 | 0.9173 |
|
313 |
+
| 0.8840 | 9000 | 0.0250 | 0.6691 | 0.6804 | 0.6747 | 0.9206 |
|
314 |
+
| 1.1787 | 12000 | 0.0239 | 0.6865 | 0.6761 | 0.6813 | 0.9212 |
|
315 |
+
| 1.4733 | 15000 | 0.0234 | 0.6872 | 0.6812 | 0.6842 | 0.9226 |
|
316 |
+
| 1.7680 | 18000 | 0.0231 | 0.6919 | 0.6821 | 0.6870 | 0.9227 |
|
317 |
+
| 2.0627 | 21000 | 0.0231 | 0.6909 | 0.6871 | 0.6890 | 0.9233 |
|
318 |
+
| 2.3573 | 24000 | 0.0231 | 0.6903 | 0.6875 | 0.6889 | 0.9238 |
|
319 |
+
| 2.6520 | 27000 | 0.0229 | 0.6918 | 0.6926 | 0.6922 | 0.9242 |
|
320 |
+
| 2.9467 | 30000 | 0.0228 | 0.6927 | 0.6930 | 0.6928 | 0.9243 |
|
321 |
+
|
322 |
+
### Environmental Impact
|
323 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
324 |
+
- **Carbon Emitted**: 0.453 kg of CO2
|
325 |
+
- **Hours Used**: 3.118 hours
|
326 |
+
|
327 |
+
### Training Hardware
|
328 |
+
- **On Cloud**: No
|
329 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
330 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
331 |
+
- **RAM Size**: 31.78 GB
|
332 |
+
|
333 |
+
### Framework Versions
|
334 |
+
- Python: 3.9.16
|
335 |
+
- SpanMarker: 1.4.1.dev
|
336 |
+
- Transformers: 4.30.0
|
337 |
+
- PyTorch: 2.0.1+cu118
|
338 |
+
- Datasets: 2.14.0
|
339 |
+
- Tokenizers: 0.13.2
|
340 |
+
|
341 |
+
## Citation
|
342 |
+
|
343 |
+
### BibTeX
|
344 |
+
```
|
345 |
+
@software{Aarsen_SpanMarker,
|
346 |
+
author = {Aarsen, Tom},
|
347 |
+
license = {Apache-2.0},
|
348 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
349 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
350 |
+
}
|
351 |
+
```
|
352 |
+
|
353 |
+
<!--
|
354 |
+
## Glossary
|
355 |
+
|
356 |
+
*Clearly define terms in order to be accessible across audiences.*
|
357 |
+
-->
|
358 |
+
|
359 |
+
<!--
|
360 |
+
## Model Card Authors
|
361 |
+
|
362 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
363 |
+
-->
|
364 |
+
|
365 |
+
<!--
|
366 |
+
## Model Card Contact
|
367 |
+
|
368 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
369 |
+
-->
|
config.json
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "models\\span_marker_xlm_roberta_base_fewnerd_fine_super_2\\checkpoint-final",
|
3 |
"architectures": [
|
4 |
"SpanMarkerModel"
|
5 |
],
|
@@ -208,7 +207,7 @@
|
|
208 |
"top_p": 1.0,
|
209 |
"torch_dtype": null,
|
210 |
"torchscript": false,
|
211 |
-
"transformers_version": "4.
|
212 |
"type_vocab_size": 1,
|
213 |
"typical_p": 1.0,
|
214 |
"use_bfloat16": false,
|
@@ -222,9 +221,9 @@
|
|
222 |
"model_max_length": 256,
|
223 |
"model_max_length_default": 512,
|
224 |
"model_type": "span-marker",
|
225 |
-
"span_marker_version": "1.1.
|
226 |
"torch_dtype": "float32",
|
227 |
"trained_with_document_context": false,
|
228 |
-
"transformers_version": "4.
|
229 |
"vocab_size": 250004
|
230 |
}
|
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"SpanMarkerModel"
|
4 |
],
|
|
|
207 |
"top_p": 1.0,
|
208 |
"torch_dtype": null,
|
209 |
"torchscript": false,
|
210 |
+
"transformers_version": "4.30.0",
|
211 |
"type_vocab_size": 1,
|
212 |
"typical_p": 1.0,
|
213 |
"use_bfloat16": false,
|
|
|
221 |
"model_max_length": 256,
|
222 |
"model_max_length_default": 512,
|
223 |
"model_type": "span-marker",
|
224 |
+
"span_marker_version": "1.4.1.dev",
|
225 |
"torch_dtype": "float32",
|
226 |
"trained_with_document_context": false,
|
227 |
+
"transformers_version": "4.30.0",
|
228 |
"vocab_size": 250004
|
229 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c04d295a6caaac64b05a9d47a497eb9326de098916570b4f75a1d2c7007524a9
|
3 |
+
size 1112666037
|
tokenizer.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:990bd951e6640c385b5242633997f977328dd19bd69e889f42c537e21b25dbe9
|
3 |
+
size 17083483
|
tokenizer_config.json
CHANGED
@@ -3,7 +3,9 @@
|
|
3 |
"bos_token": "<s>",
|
4 |
"clean_up_tokenization_spaces": true,
|
5 |
"cls_token": "<s>",
|
|
|
6 |
"eos_token": "</s>",
|
|
|
7 |
"mask_token": {
|
8 |
"__type": "AddedToken",
|
9 |
"content": "<mask>",
|
@@ -12,7 +14,7 @@
|
|
12 |
"rstrip": false,
|
13 |
"single_word": false
|
14 |
},
|
15 |
-
"model_max_length":
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"tokenizer_class": "XLMRobertaTokenizer",
|
|
|
3 |
"bos_token": "<s>",
|
4 |
"clean_up_tokenization_spaces": true,
|
5 |
"cls_token": "<s>",
|
6 |
+
"entity_max_length": 8,
|
7 |
"eos_token": "</s>",
|
8 |
+
"marker_max_length": 128,
|
9 |
"mask_token": {
|
10 |
"__type": "AddedToken",
|
11 |
"content": "<mask>",
|
|
|
14 |
"rstrip": false,
|
15 |
"single_word": false
|
16 |
},
|
17 |
+
"model_max_length": 256,
|
18 |
"pad_token": "<pad>",
|
19 |
"sep_token": "</s>",
|
20 |
"tokenizer_class": "XLMRobertaTokenizer",
|