tomaarsen HF staff commited on
Commit
4bf5ab4
1 Parent(s): e248751

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +142 -0
train_script.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import logging
3
+ from datasets import load_dataset, Dataset
4
+ from sentence_transformers import (
5
+ SentenceTransformer,
6
+ SentenceTransformerTrainer,
7
+ SentenceTransformerTrainingArguments,
8
+ SentenceTransformerModelCardData,
9
+ )
10
+ from typing import Any, Dict, Iterable
11
+ import torch
12
+ from torch import nn
13
+ from sentence_transformers.losses import MultipleNegativesRankingLoss, MultipleNegativesSymmetricRankingLoss
14
+ from sentence_transformers import util
15
+ from sentence_transformers.training_args import BatchSamplers
16
+ from sentence_transformers.evaluation import InformationRetrievalEvaluator
17
+
18
+
19
+ logging.basicConfig(
20
+ format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
21
+ )
22
+
23
+ # 1. Load a model to finetune with 2. (Optional) model card data
24
+ model = SentenceTransformer(
25
+ "microsoft/mpnet-base",
26
+ model_card_data=SentenceTransformerModelCardData(
27
+ language="en",
28
+ license="apache-2.0",
29
+ model_name="MPNet base trained on Natural Questions pairs",
30
+ ),
31
+ )
32
+ model_name = "mpnet-base-natural-questions-mnsrl"
33
+
34
+ # 3. Load a dataset to finetune on
35
+ dataset = load_dataset("sentence-transformers/natural-questions", split="train")
36
+ dataset = dataset.add_column("id", range(len(dataset)))
37
+ train_dataset: Dataset = dataset.select(range(90_000))
38
+ eval_dataset: Dataset = dataset.select(range(90_000, len(dataset)))
39
+
40
+ # 4. Define a loss function
41
+ class ImprovedContrastiveLoss(nn.Module):
42
+ def __init__(self, model: SentenceTransformer, temperature: float = 0.01):
43
+ super(ImprovedContrastiveLoss, self).__init__()
44
+ self.model = model
45
+ self.temperature = temperature
46
+
47
+ def forward(self, sentence_features: Iterable[Dict[str, torch.Tensor]], labels: torch.Tensor = None) -> torch.Tensor:
48
+ # Get the embeddings for each sentence in the batch
49
+ embeddings = [self.model(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features]
50
+ query_embeddings = embeddings[0]
51
+ doc_embeddings = embeddings[1]
52
+
53
+ # Compute similarity scores
54
+ similarity_q_d = util.cos_sim(query_embeddings, doc_embeddings)
55
+ similarity_q_q = util.cos_sim(query_embeddings, query_embeddings)
56
+ similarity_d_d = util.cos_sim(doc_embeddings, doc_embeddings)
57
+
58
+ # Move the similarity range from [-1, 1] to [-2, 0] to avoid overflow
59
+ similarity_q_d = similarity_q_d - 1
60
+ similarity_q_q = similarity_q_q - 1
61
+ similarity_d_d = similarity_d_d - 1
62
+
63
+ # Compute the partition function
64
+ exp_sim_q_d = torch.exp(similarity_q_d / self.temperature)
65
+ exp_sim_q_q = torch.exp(similarity_q_q / self.temperature)
66
+ exp_sim_d_d = torch.exp(similarity_d_d / self.temperature)
67
+
68
+ # Ensure the diagonal is not considered in negative samples
69
+ mask = torch.eye(similarity_q_d.size(0), device=similarity_q_d.device).bool()
70
+ exp_sim_q_q = exp_sim_q_q.masked_fill(mask, 0)
71
+ exp_sim_d_d = exp_sim_d_d.masked_fill(mask, 0)
72
+
73
+ partition_function = exp_sim_q_d.sum(dim=1) + exp_sim_q_d.sum(dim=0) + exp_sim_q_q.sum(dim=1) + exp_sim_d_d.sum(dim=0)
74
+
75
+ # Compute the loss
76
+ loss = -torch.log(exp_sim_q_d.diag() / partition_function).mean()
77
+ return loss
78
+
79
+ def get_config_dict(self) -> Dict[str, Any]:
80
+ return {"temperature": self.temperature}
81
+
82
+ # loss = ImprovedContrastiveLoss(model)
83
+ loss = MultipleNegativesSymmetricRankingLoss(model)
84
+
85
+
86
+ # 5. (Optional) Specify training arguments
87
+ args = SentenceTransformerTrainingArguments(
88
+ # Required parameter:
89
+ output_dir=f"models/{model_name}",
90
+ # Optional training parameters:
91
+ num_train_epochs=1,
92
+ per_device_train_batch_size=32,
93
+ per_device_eval_batch_size=32,
94
+ learning_rate=2e-5,
95
+ warmup_ratio=0.1,
96
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
97
+ bf16=True, # Set to True if you have a GPU that supports BF16
98
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
99
+ # Optional tracking/debugging parameters:
100
+ eval_strategy="steps",
101
+ eval_steps=100,
102
+ save_strategy="steps",
103
+ save_steps=100,
104
+ save_total_limit=2,
105
+ logging_steps=100,
106
+ logging_first_step=True,
107
+ run_name=model_name, # Will be used in W&B if `wandb` is installed
108
+ )
109
+
110
+ # 6. (Optional) Create an evaluator & evaluate the base model
111
+ # The full corpus, but only the evaluation queries
112
+ queries = dict(zip(eval_dataset["id"], eval_dataset["query"]))
113
+ corpus = {cid: dataset[cid]["answer"] for cid in range(20_000)} | {cid: dataset[cid]["answer"] for cid in eval_dataset["id"]}
114
+ relevant_docs = {qid: {qid} for qid in eval_dataset["id"]}
115
+ dev_evaluator = InformationRetrievalEvaluator(
116
+ corpus=corpus,
117
+ queries=queries,
118
+ relevant_docs=relevant_docs,
119
+ show_progress_bar=True,
120
+ name="natural-questions-dev",
121
+ )
122
+ dev_evaluator(model)
123
+
124
+ # 7. Create a trainer & train
125
+ trainer = SentenceTransformerTrainer(
126
+ model=model,
127
+ args=args,
128
+ train_dataset=train_dataset.remove_columns("id"),
129
+ eval_dataset=eval_dataset.remove_columns("id"),
130
+ loss=loss,
131
+ evaluator=dev_evaluator,
132
+ )
133
+ trainer.train()
134
+
135
+ # (Optional) Evaluate the trained model on the evaluator after training
136
+ dev_evaluator(model)
137
+
138
+ # 8. Save the trained model
139
+ model.save_pretrained(f"models/{model_name}/final")
140
+
141
+ # 9. (Optional) Push it to the Hugging Face Hub
142
+ model.push_to_hub(f"{model_name}")