---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A baby is laughing.
sentences:
- The baby laughed in his car seat.
- A toddler walks down a hallway.
- Japan falls silent to mark 311 tragedy
- source_sentence: A woman is reading.
sentences:
- A woman is writing something.
- The man is in a deserted field.
- Obama urges no new sanctions on Iran
- source_sentence: A man is spitting.
sentences:
- A man is crying.
- A girl plays a wind instrument.
- Kids playing ball in the park.
- source_sentence: A man shoots a man.
sentences:
- A man is shooting off guns.
- A slow loris hanging on a cord.
- Finance minister promises no new taxes
- source_sentence: A boy is vacuuming.
sentences:
- A little boy is vacuuming the floor.
- A woman is applying eye shadow.
- Glorious triple-gold night for Britain
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 94.71657156591533
energy_consumed: 0.2436740010751561
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.923
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.832978199459682
name: Pearson Cosine
- type: spearman_cosine
value: 0.8449812730792539
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8284059469034439
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8314151253676515
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8291459460248565
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8319080532683886
name: Spearman Euclidean
- type: pearson_dot
value: 0.7274279213358037
name: Pearson Dot
- type: spearman_dot
value: 0.7358272455513368
name: Spearman Dot
- type: pearson_max
value: 0.832978199459682
name: Pearson Max
- type: spearman_max
value: 0.8449812730792539
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 128
type: sts-dev-128
metrics:
- type: pearson_cosine
value: 0.8266436609310417
name: Pearson Cosine
- type: spearman_cosine
value: 0.841563547795295
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8250171666597236
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8276544602820737
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8255984422889996
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.828520082690129
name: Spearman Euclidean
- type: pearson_dot
value: 0.7120095981036954
name: Pearson Dot
- type: spearman_dot
value: 0.7163267085950832
name: Spearman Dot
- type: pearson_max
value: 0.8266436609310417
name: Pearson Max
- type: spearman_max
value: 0.841563547795295
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.817074395539638
name: Pearson Cosine
- type: spearman_cosine
value: 0.8355573303767316
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8175610864074738
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8212543828500742
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8175058817585
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8216438541895171
name: Spearman Euclidean
- type: pearson_dot
value: 0.6852246329807953
name: Pearson Dot
- type: spearman_dot
value: 0.6861394760239012
name: Spearman Dot
- type: pearson_max
value: 0.8175610864074738
name: Pearson Max
- type: spearman_max
value: 0.8355573303767316
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 32
type: sts-dev-32
metrics:
- type: pearson_cosine
value: 0.7963856490231295
name: Pearson Cosine
- type: spearman_cosine
value: 0.8243820415687734
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7982768947167747
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.804919985023919
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.800259304954162
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8069660671225415
name: Spearman Euclidean
- type: pearson_dot
value: 0.6311831976256888
name: Pearson Dot
- type: spearman_dot
value: 0.6277202377535699
name: Spearman Dot
- type: pearson_max
value: 0.800259304954162
name: Pearson Max
- type: spearman_max
value: 0.8243820415687734
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 16
type: sts-dev-16
metrics:
- type: pearson_cosine
value: 0.7401161630034654
name: Pearson Cosine
- type: spearman_cosine
value: 0.7871969780219474
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7609788932639057
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7761115272699121
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7645256699036285
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7794348361665424
name: Spearman Euclidean
- type: pearson_dot
value: 0.5201701018366058
name: Pearson Dot
- type: spearman_dot
value: 0.511537896780009
name: Spearman Dot
- type: pearson_max
value: 0.7645256699036285
name: Pearson Max
- type: spearman_max
value: 0.7871969780219474
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.8124139776213125
name: Pearson Cosine
- type: spearman_cosine
value: 0.8211087618006394
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7835377144525455
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7821679937822867
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.785247473429926
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7839505779526579
name: Spearman Euclidean
- type: pearson_dot
value: 0.5917356859640799
name: Pearson Dot
- type: spearman_dot
value: 0.5785063907246168
name: Spearman Dot
- type: pearson_max
value: 0.8124139776213125
name: Pearson Max
- type: spearman_max
value: 0.8211087618006394
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.8079155052116238
name: Pearson Cosine
- type: spearman_cosine
value: 0.8190362316108264
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7794841536695422
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7786315620445202
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.781284034387115
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7812532216784576
name: Spearman Euclidean
- type: pearson_dot
value: 0.5714349767115854
name: Pearson Dot
- type: spearman_dot
value: 0.5601824337480018
name: Spearman Dot
- type: pearson_max
value: 0.8079155052116238
name: Pearson Max
- type: spearman_max
value: 0.8190362316108264
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7987987273687178
name: Pearson Cosine
- type: spearman_cosine
value: 0.8128864395227673
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7727564778562619
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7727917251788465
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7734618345058613
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7751195654319647
name: Spearman Euclidean
- type: pearson_dot
value: 0.5397052344713898
name: Pearson Dot
- type: spearman_dot
value: 0.5279010425382445
name: Spearman Dot
- type: pearson_max
value: 0.7987987273687178
name: Pearson Max
- type: spearman_max
value: 0.8128864395227673
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 32
type: sts-test-32
metrics:
- type: pearson_cosine
value: 0.7720012222035324
name: Pearson Cosine
- type: spearman_cosine
value: 0.7936423982593883
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7561303110063385
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7597271202292094
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7580804607973455
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7628041180101269
name: Spearman Euclidean
- type: pearson_dot
value: 0.48898156184384284
name: Pearson Dot
- type: spearman_dot
value: 0.47793665423562026
name: Spearman Dot
- type: pearson_max
value: 0.7720012222035324
name: Pearson Max
- type: spearman_max
value: 0.7936423982593883
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 16
type: sts-test-16
metrics:
- type: pearson_cosine
value: 0.7137967594997888
name: Pearson Cosine
- type: spearman_cosine
value: 0.7485767932719462
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7254358927069169
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7339448581065434
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7274341928076351
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7382083636772965
name: Spearman Euclidean
- type: pearson_dot
value: 0.385573703763858
name: Pearson Dot
- type: spearman_dot
value: 0.3749226996833225
name: Spearman Dot
- type: pearson_max
value: 0.7274341928076351
name: Pearson Max
- type: spearman_max
value: 0.7485767932719462
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilroberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 256 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(reduced_dim): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-reduced")
# Run inference
sentences = [
'A boy is vacuuming.',
'A little boy is vacuuming the floor.',
'A woman is applying eye shadow.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.833 |
| **spearman_cosine** | **0.845** |
| pearson_manhattan | 0.8284 |
| spearman_manhattan | 0.8314 |
| pearson_euclidean | 0.8291 |
| spearman_euclidean | 0.8319 |
| pearson_dot | 0.7274 |
| spearman_dot | 0.7358 |
| pearson_max | 0.833 |
| spearman_max | 0.845 |
#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8266 |
| **spearman_cosine** | **0.8416** |
| pearson_manhattan | 0.825 |
| spearman_manhattan | 0.8277 |
| pearson_euclidean | 0.8256 |
| spearman_euclidean | 0.8285 |
| pearson_dot | 0.712 |
| spearman_dot | 0.7163 |
| pearson_max | 0.8266 |
| spearman_max | 0.8416 |
#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8171 |
| **spearman_cosine** | **0.8356** |
| pearson_manhattan | 0.8176 |
| spearman_manhattan | 0.8213 |
| pearson_euclidean | 0.8175 |
| spearman_euclidean | 0.8216 |
| pearson_dot | 0.6852 |
| spearman_dot | 0.6861 |
| pearson_max | 0.8176 |
| spearman_max | 0.8356 |
#### Semantic Similarity
* Dataset: `sts-dev-32`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7964 |
| **spearman_cosine** | **0.8244** |
| pearson_manhattan | 0.7983 |
| spearman_manhattan | 0.8049 |
| pearson_euclidean | 0.8003 |
| spearman_euclidean | 0.807 |
| pearson_dot | 0.6312 |
| spearman_dot | 0.6277 |
| pearson_max | 0.8003 |
| spearman_max | 0.8244 |
#### Semantic Similarity
* Dataset: `sts-dev-16`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7401 |
| **spearman_cosine** | **0.7872** |
| pearson_manhattan | 0.761 |
| spearman_manhattan | 0.7761 |
| pearson_euclidean | 0.7645 |
| spearman_euclidean | 0.7794 |
| pearson_dot | 0.5202 |
| spearman_dot | 0.5115 |
| pearson_max | 0.7645 |
| spearman_max | 0.7872 |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8124 |
| **spearman_cosine** | **0.8211** |
| pearson_manhattan | 0.7835 |
| spearman_manhattan | 0.7822 |
| pearson_euclidean | 0.7852 |
| spearman_euclidean | 0.784 |
| pearson_dot | 0.5917 |
| spearman_dot | 0.5785 |
| pearson_max | 0.8124 |
| spearman_max | 0.8211 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.8079 |
| **spearman_cosine** | **0.819** |
| pearson_manhattan | 0.7795 |
| spearman_manhattan | 0.7786 |
| pearson_euclidean | 0.7813 |
| spearman_euclidean | 0.7813 |
| pearson_dot | 0.5714 |
| spearman_dot | 0.5602 |
| pearson_max | 0.8079 |
| spearman_max | 0.819 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7988 |
| **spearman_cosine** | **0.8129** |
| pearson_manhattan | 0.7728 |
| spearman_manhattan | 0.7728 |
| pearson_euclidean | 0.7735 |
| spearman_euclidean | 0.7751 |
| pearson_dot | 0.5397 |
| spearman_dot | 0.5279 |
| pearson_max | 0.7988 |
| spearman_max | 0.8129 |
#### Semantic Similarity
* Dataset: `sts-test-32`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.772 |
| **spearman_cosine** | **0.7936** |
| pearson_manhattan | 0.7561 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7581 |
| spearman_euclidean | 0.7628 |
| pearson_dot | 0.489 |
| spearman_dot | 0.4779 |
| pearson_max | 0.772 |
| spearman_max | 0.7936 |
#### Semantic Similarity
* Dataset: `sts-test-16`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7138 |
| **spearman_cosine** | **0.7486** |
| pearson_manhattan | 0.7254 |
| spearman_manhattan | 0.7339 |
| pearson_euclidean | 0.7274 |
| spearman_euclidean | 0.7382 |
| pearson_dot | 0.3856 |
| spearman_dot | 0.3749 |
| pearson_max | 0.7274 |
| spearman_max | 0.7486 |
## Training Details
### Training Dataset
#### sentence-transformers/all-nli
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe)
* Size: 557,850 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters