Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +1336 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:3012496
|
11 |
+
- loss:MatryoshkaLoss
|
12 |
+
- loss:CachedMultipleNegativesRankingLoss
|
13 |
+
base_model: google-bert/bert-base-uncased
|
14 |
+
widget:
|
15 |
+
- source_sentence: are the sequels better than the prequels?
|
16 |
+
sentences:
|
17 |
+
- '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
|
18 |
+
- The prequels are also not scared to take risks, making movies which are very different
|
19 |
+
from the original trilogy. The sequel saga, on the other hand, are technically
|
20 |
+
better made films, the acting is more consistent, the CGI is better and the writing
|
21 |
+
is stronger, however it falls down in many other places.
|
22 |
+
- While both public and private sectors use budgets as a key planning tool, public
|
23 |
+
bodies balance budgets, while private sector firms use budgets to predict operating
|
24 |
+
results. The public sector budget matches expenditures on mandated assets and
|
25 |
+
services with receipts of public money such as taxes and fees.
|
26 |
+
- source_sentence: are there bbqs at lake leschenaultia?
|
27 |
+
sentences:
|
28 |
+
- Vestavia Hills. The hummingbird, or, el zunzún as they are often called in the
|
29 |
+
Caribbean, have such a nickname because of their quick movements. The ruby-throated
|
30 |
+
hummingbird, the most commonly seen hummingbird in Alabama, is the inspiration
|
31 |
+
for this restaurant.
|
32 |
+
- Common causes of abdominal tenderness Abdominal tenderness is generally a sign
|
33 |
+
of inflammation or other acute processes in one or more organs. The organs are
|
34 |
+
located around the tender area. Acute processes mean sudden pressure caused by
|
35 |
+
something. For example, twisted or blocked organs can cause point tenderness.
|
36 |
+
- Located on 168 hectares of nature reserve, Lake Leschenaultia is the perfect
|
37 |
+
spot for a family day out in the Perth Hills. The Lake offers canoeing, swimming,
|
38 |
+
walk and cycle trails, as well as picnic, BBQ and camping facilities. ... There
|
39 |
+
are picnic tables set amongst lovely Wandoo trees.
|
40 |
+
- source_sentence: how much folic acid should you take prenatal?
|
41 |
+
sentences:
|
42 |
+
- Folic acid is a pregnancy superhero! Taking a prenatal vitamin with the recommended
|
43 |
+
400 micrograms (mcg) of folic acid before and during pregnancy can help prevent
|
44 |
+
birth defects of your baby's brain and spinal cord. Take it every day and go ahead
|
45 |
+
and have a bowl of fortified cereal, too.
|
46 |
+
- '[''You must be unemployed through no fault of your own, as defined by Virginia
|
47 |
+
law.'', ''You must have earned at least a minimum amount in wages before you were
|
48 |
+
unemployed.'', ''You must be able and available to work, and you must be actively
|
49 |
+
seeking employment.'']'
|
50 |
+
- Wallpaper is printed in batches of rolls. It is important to have the same batch
|
51 |
+
number, to ensure colours match exactly. The batch number is usually located on
|
52 |
+
the wallpaper label close to the pattern number. Remember batch numbers also apply
|
53 |
+
to white wallpapers, as different batches can be different shades of white.
|
54 |
+
- source_sentence: what is the difference between minerals and electrolytes?
|
55 |
+
sentences:
|
56 |
+
- 'North: Just head north of Junk Junction like so. South: Head below Lucky Landing.
|
57 |
+
East: You''re basically landing between Lonely Lodge and the Racetrack. West:
|
58 |
+
The sign is west of Snobby Shores.'
|
59 |
+
- The fasting glucose tolerance test is the simplest and fastest way to measure
|
60 |
+
blood glucose and diagnose diabetes. Fasting means that you have had nothing to
|
61 |
+
eat or drink (except water) for 8 to 12 hours before the test.
|
62 |
+
- In other words, the term “electrolyte” typically implies ionized minerals dissolved
|
63 |
+
within water and beverages. Electrolytes are typically minerals, whereas minerals
|
64 |
+
may or may not be electrolytes.
|
65 |
+
- source_sentence: how can i download youtube videos with internet download manager?
|
66 |
+
sentences:
|
67 |
+
- '[''Go to settings and then click on extensions (top left side in chrome).'',
|
68 |
+
''Minimise your browser and open the location (folder) where IDM is installed.
|
69 |
+
... '', ''Find the file “IDMGCExt. ... '', ''Drag this file to your chrome browser
|
70 |
+
and drop to install the IDM extension.'']'
|
71 |
+
- Coca-Cola might rot your teeth and load your body with sugar and calories, but
|
72 |
+
it's actually an effective and safe first line of treatment for some stomach blockages,
|
73 |
+
researchers say.
|
74 |
+
- To fix a disabled iPhone or iPad without iTunes, you have to erase your device.
|
75 |
+
Click on the "Erase iPhone" option and confirm your selection. Wait for a while
|
76 |
+
as the "Find My iPhone" feature will remotely erase your iOS device. Needless
|
77 |
+
to say, it will also disable its lock.
|
78 |
+
datasets:
|
79 |
+
- sentence-transformers/gooaq
|
80 |
+
pipeline_tag: sentence-similarity
|
81 |
+
library_name: sentence-transformers
|
82 |
+
metrics:
|
83 |
+
- cosine_accuracy@1
|
84 |
+
- cosine_accuracy@3
|
85 |
+
- cosine_accuracy@5
|
86 |
+
- cosine_accuracy@10
|
87 |
+
- cosine_precision@1
|
88 |
+
- cosine_precision@3
|
89 |
+
- cosine_precision@5
|
90 |
+
- cosine_precision@10
|
91 |
+
- cosine_recall@1
|
92 |
+
- cosine_recall@3
|
93 |
+
- cosine_recall@5
|
94 |
+
- cosine_recall@10
|
95 |
+
- cosine_ndcg@10
|
96 |
+
- cosine_mrr@10
|
97 |
+
- cosine_map@100
|
98 |
+
co2_eq_emissions:
|
99 |
+
emissions: 242.52371141034885
|
100 |
+
energy_consumed: 0.623932244779674
|
101 |
+
source: codecarbon
|
102 |
+
training_type: fine-tuning
|
103 |
+
on_cloud: false
|
104 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
105 |
+
ram_total_size: 31.777088165283203
|
106 |
+
hours_used: 1.619
|
107 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
108 |
+
model-index:
|
109 |
+
- name: bert-base-uncased adapter finetuned on GooAQ pairs
|
110 |
+
results:
|
111 |
+
- task:
|
112 |
+
type: information-retrieval
|
113 |
+
name: Information Retrieval
|
114 |
+
dataset:
|
115 |
+
name: NanoClimateFEVER
|
116 |
+
type: NanoClimateFEVER
|
117 |
+
metrics:
|
118 |
+
- type: cosine_accuracy@1
|
119 |
+
value: 0.24
|
120 |
+
name: Cosine Accuracy@1
|
121 |
+
- type: cosine_accuracy@3
|
122 |
+
value: 0.42
|
123 |
+
name: Cosine Accuracy@3
|
124 |
+
- type: cosine_accuracy@5
|
125 |
+
value: 0.46
|
126 |
+
name: Cosine Accuracy@5
|
127 |
+
- type: cosine_accuracy@10
|
128 |
+
value: 0.56
|
129 |
+
name: Cosine Accuracy@10
|
130 |
+
- type: cosine_precision@1
|
131 |
+
value: 0.24
|
132 |
+
name: Cosine Precision@1
|
133 |
+
- type: cosine_precision@3
|
134 |
+
value: 0.15999999999999998
|
135 |
+
name: Cosine Precision@3
|
136 |
+
- type: cosine_precision@5
|
137 |
+
value: 0.10800000000000001
|
138 |
+
name: Cosine Precision@5
|
139 |
+
- type: cosine_precision@10
|
140 |
+
value: 0.07
|
141 |
+
name: Cosine Precision@10
|
142 |
+
- type: cosine_recall@1
|
143 |
+
value: 0.13166666666666665
|
144 |
+
name: Cosine Recall@1
|
145 |
+
- type: cosine_recall@3
|
146 |
+
value: 0.20833333333333337
|
147 |
+
name: Cosine Recall@3
|
148 |
+
- type: cosine_recall@5
|
149 |
+
value: 0.24166666666666664
|
150 |
+
name: Cosine Recall@5
|
151 |
+
- type: cosine_recall@10
|
152 |
+
value: 0.29666666666666663
|
153 |
+
name: Cosine Recall@10
|
154 |
+
- type: cosine_ndcg@10
|
155 |
+
value: 0.25516520961338873
|
156 |
+
name: Cosine Ndcg@10
|
157 |
+
- type: cosine_mrr@10
|
158 |
+
value: 0.3378809523809523
|
159 |
+
name: Cosine Mrr@10
|
160 |
+
- type: cosine_map@100
|
161 |
+
value: 0.20756281994556017
|
162 |
+
name: Cosine Map@100
|
163 |
+
- task:
|
164 |
+
type: information-retrieval
|
165 |
+
name: Information Retrieval
|
166 |
+
dataset:
|
167 |
+
name: NanoDBPedia
|
168 |
+
type: NanoDBPedia
|
169 |
+
metrics:
|
170 |
+
- type: cosine_accuracy@1
|
171 |
+
value: 0.54
|
172 |
+
name: Cosine Accuracy@1
|
173 |
+
- type: cosine_accuracy@3
|
174 |
+
value: 0.8
|
175 |
+
name: Cosine Accuracy@3
|
176 |
+
- type: cosine_accuracy@5
|
177 |
+
value: 0.84
|
178 |
+
name: Cosine Accuracy@5
|
179 |
+
- type: cosine_accuracy@10
|
180 |
+
value: 0.92
|
181 |
+
name: Cosine Accuracy@10
|
182 |
+
- type: cosine_precision@1
|
183 |
+
value: 0.54
|
184 |
+
name: Cosine Precision@1
|
185 |
+
- type: cosine_precision@3
|
186 |
+
value: 0.4866666666666667
|
187 |
+
name: Cosine Precision@3
|
188 |
+
- type: cosine_precision@5
|
189 |
+
value: 0.4440000000000001
|
190 |
+
name: Cosine Precision@5
|
191 |
+
- type: cosine_precision@10
|
192 |
+
value: 0.3899999999999999
|
193 |
+
name: Cosine Precision@10
|
194 |
+
- type: cosine_recall@1
|
195 |
+
value: 0.046781664425339056
|
196 |
+
name: Cosine Recall@1
|
197 |
+
- type: cosine_recall@3
|
198 |
+
value: 0.11117774881295754
|
199 |
+
name: Cosine Recall@3
|
200 |
+
- type: cosine_recall@5
|
201 |
+
value: 0.15829952609979633
|
202 |
+
name: Cosine Recall@5
|
203 |
+
- type: cosine_recall@10
|
204 |
+
value: 0.2554819210350403
|
205 |
+
name: Cosine Recall@10
|
206 |
+
- type: cosine_ndcg@10
|
207 |
+
value: 0.4644109757573673
|
208 |
+
name: Cosine Ndcg@10
|
209 |
+
- type: cosine_mrr@10
|
210 |
+
value: 0.6797460317460318
|
211 |
+
name: Cosine Mrr@10
|
212 |
+
- type: cosine_map@100
|
213 |
+
value: 0.3253011706807197
|
214 |
+
name: Cosine Map@100
|
215 |
+
- task:
|
216 |
+
type: information-retrieval
|
217 |
+
name: Information Retrieval
|
218 |
+
dataset:
|
219 |
+
name: NanoFEVER
|
220 |
+
type: NanoFEVER
|
221 |
+
metrics:
|
222 |
+
- type: cosine_accuracy@1
|
223 |
+
value: 0.54
|
224 |
+
name: Cosine Accuracy@1
|
225 |
+
- type: cosine_accuracy@3
|
226 |
+
value: 0.82
|
227 |
+
name: Cosine Accuracy@3
|
228 |
+
- type: cosine_accuracy@5
|
229 |
+
value: 0.9
|
230 |
+
name: Cosine Accuracy@5
|
231 |
+
- type: cosine_accuracy@10
|
232 |
+
value: 0.92
|
233 |
+
name: Cosine Accuracy@10
|
234 |
+
- type: cosine_precision@1
|
235 |
+
value: 0.54
|
236 |
+
name: Cosine Precision@1
|
237 |
+
- type: cosine_precision@3
|
238 |
+
value: 0.2733333333333333
|
239 |
+
name: Cosine Precision@3
|
240 |
+
- type: cosine_precision@5
|
241 |
+
value: 0.184
|
242 |
+
name: Cosine Precision@5
|
243 |
+
- type: cosine_precision@10
|
244 |
+
value: 0.09599999999999997
|
245 |
+
name: Cosine Precision@10
|
246 |
+
- type: cosine_recall@1
|
247 |
+
value: 0.53
|
248 |
+
name: Cosine Recall@1
|
249 |
+
- type: cosine_recall@3
|
250 |
+
value: 0.7766666666666666
|
251 |
+
name: Cosine Recall@3
|
252 |
+
- type: cosine_recall@5
|
253 |
+
value: 0.8566666666666666
|
254 |
+
name: Cosine Recall@5
|
255 |
+
- type: cosine_recall@10
|
256 |
+
value: 0.8866666666666667
|
257 |
+
name: Cosine Recall@10
|
258 |
+
- type: cosine_ndcg@10
|
259 |
+
value: 0.7348538316509182
|
260 |
+
name: Cosine Ndcg@10
|
261 |
+
- type: cosine_mrr@10
|
262 |
+
value: 0.6961904761904762
|
263 |
+
name: Cosine Mrr@10
|
264 |
+
- type: cosine_map@100
|
265 |
+
value: 0.6788071339639872
|
266 |
+
name: Cosine Map@100
|
267 |
+
- task:
|
268 |
+
type: information-retrieval
|
269 |
+
name: Information Retrieval
|
270 |
+
dataset:
|
271 |
+
name: NanoFiQA2018
|
272 |
+
type: NanoFiQA2018
|
273 |
+
metrics:
|
274 |
+
- type: cosine_accuracy@1
|
275 |
+
value: 0.24
|
276 |
+
name: Cosine Accuracy@1
|
277 |
+
- type: cosine_accuracy@3
|
278 |
+
value: 0.4
|
279 |
+
name: Cosine Accuracy@3
|
280 |
+
- type: cosine_accuracy@5
|
281 |
+
value: 0.5
|
282 |
+
name: Cosine Accuracy@5
|
283 |
+
- type: cosine_accuracy@10
|
284 |
+
value: 0.6
|
285 |
+
name: Cosine Accuracy@10
|
286 |
+
- type: cosine_precision@1
|
287 |
+
value: 0.24
|
288 |
+
name: Cosine Precision@1
|
289 |
+
- type: cosine_precision@3
|
290 |
+
value: 0.16
|
291 |
+
name: Cosine Precision@3
|
292 |
+
- type: cosine_precision@5
|
293 |
+
value: 0.14
|
294 |
+
name: Cosine Precision@5
|
295 |
+
- type: cosine_precision@10
|
296 |
+
value: 0.08800000000000001
|
297 |
+
name: Cosine Precision@10
|
298 |
+
- type: cosine_recall@1
|
299 |
+
value: 0.11474603174603175
|
300 |
+
name: Cosine Recall@1
|
301 |
+
- type: cosine_recall@3
|
302 |
+
value: 0.22874603174603172
|
303 |
+
name: Cosine Recall@3
|
304 |
+
- type: cosine_recall@5
|
305 |
+
value: 0.3166031746031746
|
306 |
+
name: Cosine Recall@5
|
307 |
+
- type: cosine_recall@10
|
308 |
+
value: 0.3986031746031745
|
309 |
+
name: Cosine Recall@10
|
310 |
+
- type: cosine_ndcg@10
|
311 |
+
value: 0.2925721974861802
|
312 |
+
name: Cosine Ndcg@10
|
313 |
+
- type: cosine_mrr@10
|
314 |
+
value: 0.3385
|
315 |
+
name: Cosine Mrr@10
|
316 |
+
- type: cosine_map@100
|
317 |
+
value: 0.2372091627126374
|
318 |
+
name: Cosine Map@100
|
319 |
+
- task:
|
320 |
+
type: information-retrieval
|
321 |
+
name: Information Retrieval
|
322 |
+
dataset:
|
323 |
+
name: NanoHotpotQA
|
324 |
+
type: NanoHotpotQA
|
325 |
+
metrics:
|
326 |
+
- type: cosine_accuracy@1
|
327 |
+
value: 0.6
|
328 |
+
name: Cosine Accuracy@1
|
329 |
+
- type: cosine_accuracy@3
|
330 |
+
value: 0.68
|
331 |
+
name: Cosine Accuracy@3
|
332 |
+
- type: cosine_accuracy@5
|
333 |
+
value: 0.74
|
334 |
+
name: Cosine Accuracy@5
|
335 |
+
- type: cosine_accuracy@10
|
336 |
+
value: 0.88
|
337 |
+
name: Cosine Accuracy@10
|
338 |
+
- type: cosine_precision@1
|
339 |
+
value: 0.6
|
340 |
+
name: Cosine Precision@1
|
341 |
+
- type: cosine_precision@3
|
342 |
+
value: 0.2866666666666667
|
343 |
+
name: Cosine Precision@3
|
344 |
+
- type: cosine_precision@5
|
345 |
+
value: 0.192
|
346 |
+
name: Cosine Precision@5
|
347 |
+
- type: cosine_precision@10
|
348 |
+
value: 0.118
|
349 |
+
name: Cosine Precision@10
|
350 |
+
- type: cosine_recall@1
|
351 |
+
value: 0.3
|
352 |
+
name: Cosine Recall@1
|
353 |
+
- type: cosine_recall@3
|
354 |
+
value: 0.43
|
355 |
+
name: Cosine Recall@3
|
356 |
+
- type: cosine_recall@5
|
357 |
+
value: 0.48
|
358 |
+
name: Cosine Recall@5
|
359 |
+
- type: cosine_recall@10
|
360 |
+
value: 0.59
|
361 |
+
name: Cosine Recall@10
|
362 |
+
- type: cosine_ndcg@10
|
363 |
+
value: 0.5291588954628265
|
364 |
+
name: Cosine Ndcg@10
|
365 |
+
- type: cosine_mrr@10
|
366 |
+
value: 0.6639365079365079
|
367 |
+
name: Cosine Mrr@10
|
368 |
+
- type: cosine_map@100
|
369 |
+
value: 0.45230644038161627
|
370 |
+
name: Cosine Map@100
|
371 |
+
- task:
|
372 |
+
type: information-retrieval
|
373 |
+
name: Information Retrieval
|
374 |
+
dataset:
|
375 |
+
name: NanoMSMARCO
|
376 |
+
type: NanoMSMARCO
|
377 |
+
metrics:
|
378 |
+
- type: cosine_accuracy@1
|
379 |
+
value: 0.28
|
380 |
+
name: Cosine Accuracy@1
|
381 |
+
- type: cosine_accuracy@3
|
382 |
+
value: 0.48
|
383 |
+
name: Cosine Accuracy@3
|
384 |
+
- type: cosine_accuracy@5
|
385 |
+
value: 0.54
|
386 |
+
name: Cosine Accuracy@5
|
387 |
+
- type: cosine_accuracy@10
|
388 |
+
value: 0.66
|
389 |
+
name: Cosine Accuracy@10
|
390 |
+
- type: cosine_precision@1
|
391 |
+
value: 0.28
|
392 |
+
name: Cosine Precision@1
|
393 |
+
- type: cosine_precision@3
|
394 |
+
value: 0.16
|
395 |
+
name: Cosine Precision@3
|
396 |
+
- type: cosine_precision@5
|
397 |
+
value: 0.10800000000000001
|
398 |
+
name: Cosine Precision@5
|
399 |
+
- type: cosine_precision@10
|
400 |
+
value: 0.066
|
401 |
+
name: Cosine Precision@10
|
402 |
+
- type: cosine_recall@1
|
403 |
+
value: 0.28
|
404 |
+
name: Cosine Recall@1
|
405 |
+
- type: cosine_recall@3
|
406 |
+
value: 0.48
|
407 |
+
name: Cosine Recall@3
|
408 |
+
- type: cosine_recall@5
|
409 |
+
value: 0.54
|
410 |
+
name: Cosine Recall@5
|
411 |
+
- type: cosine_recall@10
|
412 |
+
value: 0.66
|
413 |
+
name: Cosine Recall@10
|
414 |
+
- type: cosine_ndcg@10
|
415 |
+
value: 0.46795689507567784
|
416 |
+
name: Cosine Ndcg@10
|
417 |
+
- type: cosine_mrr@10
|
418 |
+
value: 0.4079126984126984
|
419 |
+
name: Cosine Mrr@10
|
420 |
+
- type: cosine_map@100
|
421 |
+
value: 0.42763462709531985
|
422 |
+
name: Cosine Map@100
|
423 |
+
- task:
|
424 |
+
type: information-retrieval
|
425 |
+
name: Information Retrieval
|
426 |
+
dataset:
|
427 |
+
name: NanoNFCorpus
|
428 |
+
type: NanoNFCorpus
|
429 |
+
metrics:
|
430 |
+
- type: cosine_accuracy@1
|
431 |
+
value: 0.32
|
432 |
+
name: Cosine Accuracy@1
|
433 |
+
- type: cosine_accuracy@3
|
434 |
+
value: 0.48
|
435 |
+
name: Cosine Accuracy@3
|
436 |
+
- type: cosine_accuracy@5
|
437 |
+
value: 0.5
|
438 |
+
name: Cosine Accuracy@5
|
439 |
+
- type: cosine_accuracy@10
|
440 |
+
value: 0.56
|
441 |
+
name: Cosine Accuracy@10
|
442 |
+
- type: cosine_precision@1
|
443 |
+
value: 0.32
|
444 |
+
name: Cosine Precision@1
|
445 |
+
- type: cosine_precision@3
|
446 |
+
value: 0.30666666666666664
|
447 |
+
name: Cosine Precision@3
|
448 |
+
- type: cosine_precision@5
|
449 |
+
value: 0.244
|
450 |
+
name: Cosine Precision@5
|
451 |
+
- type: cosine_precision@10
|
452 |
+
value: 0.184
|
453 |
+
name: Cosine Precision@10
|
454 |
+
- type: cosine_recall@1
|
455 |
+
value: 0.02092621665706462
|
456 |
+
name: Cosine Recall@1
|
457 |
+
- type: cosine_recall@3
|
458 |
+
value: 0.053426190783308986
|
459 |
+
name: Cosine Recall@3
|
460 |
+
- type: cosine_recall@5
|
461 |
+
value: 0.06393651269284006
|
462 |
+
name: Cosine Recall@5
|
463 |
+
- type: cosine_recall@10
|
464 |
+
value: 0.08045448545888809
|
465 |
+
name: Cosine Recall@10
|
466 |
+
- type: cosine_ndcg@10
|
467 |
+
value: 0.23067635403503162
|
468 |
+
name: Cosine Ndcg@10
|
469 |
+
- type: cosine_mrr@10
|
470 |
+
value: 0.39788888888888885
|
471 |
+
name: Cosine Mrr@10
|
472 |
+
- type: cosine_map@100
|
473 |
+
value: 0.09661097314535905
|
474 |
+
name: Cosine Map@100
|
475 |
+
- task:
|
476 |
+
type: information-retrieval
|
477 |
+
name: Information Retrieval
|
478 |
+
dataset:
|
479 |
+
name: NanoNQ
|
480 |
+
type: NanoNQ
|
481 |
+
metrics:
|
482 |
+
- type: cosine_accuracy@1
|
483 |
+
value: 0.38
|
484 |
+
name: Cosine Accuracy@1
|
485 |
+
- type: cosine_accuracy@3
|
486 |
+
value: 0.54
|
487 |
+
name: Cosine Accuracy@3
|
488 |
+
- type: cosine_accuracy@5
|
489 |
+
value: 0.62
|
490 |
+
name: Cosine Accuracy@5
|
491 |
+
- type: cosine_accuracy@10
|
492 |
+
value: 0.74
|
493 |
+
name: Cosine Accuracy@10
|
494 |
+
- type: cosine_precision@1
|
495 |
+
value: 0.38
|
496 |
+
name: Cosine Precision@1
|
497 |
+
- type: cosine_precision@3
|
498 |
+
value: 0.18
|
499 |
+
name: Cosine Precision@3
|
500 |
+
- type: cosine_precision@5
|
501 |
+
value: 0.128
|
502 |
+
name: Cosine Precision@5
|
503 |
+
- type: cosine_precision@10
|
504 |
+
value: 0.07600000000000001
|
505 |
+
name: Cosine Precision@10
|
506 |
+
- type: cosine_recall@1
|
507 |
+
value: 0.38
|
508 |
+
name: Cosine Recall@1
|
509 |
+
- type: cosine_recall@3
|
510 |
+
value: 0.51
|
511 |
+
name: Cosine Recall@3
|
512 |
+
- type: cosine_recall@5
|
513 |
+
value: 0.6
|
514 |
+
name: Cosine Recall@5
|
515 |
+
- type: cosine_recall@10
|
516 |
+
value: 0.71
|
517 |
+
name: Cosine Recall@10
|
518 |
+
- type: cosine_ndcg@10
|
519 |
+
value: 0.5386606354769653
|
520 |
+
name: Cosine Ndcg@10
|
521 |
+
- type: cosine_mrr@10
|
522 |
+
value: 0.490547619047619
|
523 |
+
name: Cosine Mrr@10
|
524 |
+
- type: cosine_map@100
|
525 |
+
value: 0.48961052316839493
|
526 |
+
name: Cosine Map@100
|
527 |
+
- task:
|
528 |
+
type: information-retrieval
|
529 |
+
name: Information Retrieval
|
530 |
+
dataset:
|
531 |
+
name: NanoQuoraRetrieval
|
532 |
+
type: NanoQuoraRetrieval
|
533 |
+
metrics:
|
534 |
+
- type: cosine_accuracy@1
|
535 |
+
value: 0.84
|
536 |
+
name: Cosine Accuracy@1
|
537 |
+
- type: cosine_accuracy@3
|
538 |
+
value: 0.94
|
539 |
+
name: Cosine Accuracy@3
|
540 |
+
- type: cosine_accuracy@5
|
541 |
+
value: 0.98
|
542 |
+
name: Cosine Accuracy@5
|
543 |
+
- type: cosine_accuracy@10
|
544 |
+
value: 1.0
|
545 |
+
name: Cosine Accuracy@10
|
546 |
+
- type: cosine_precision@1
|
547 |
+
value: 0.84
|
548 |
+
name: Cosine Precision@1
|
549 |
+
- type: cosine_precision@3
|
550 |
+
value: 0.38666666666666655
|
551 |
+
name: Cosine Precision@3
|
552 |
+
- type: cosine_precision@5
|
553 |
+
value: 0.24799999999999997
|
554 |
+
name: Cosine Precision@5
|
555 |
+
- type: cosine_precision@10
|
556 |
+
value: 0.12999999999999998
|
557 |
+
name: Cosine Precision@10
|
558 |
+
- type: cosine_recall@1
|
559 |
+
value: 0.7573333333333332
|
560 |
+
name: Cosine Recall@1
|
561 |
+
- type: cosine_recall@3
|
562 |
+
value: 0.912
|
563 |
+
name: Cosine Recall@3
|
564 |
+
- type: cosine_recall@5
|
565 |
+
value: 0.946
|
566 |
+
name: Cosine Recall@5
|
567 |
+
- type: cosine_recall@10
|
568 |
+
value: 0.9793333333333334
|
569 |
+
name: Cosine Recall@10
|
570 |
+
- type: cosine_ndcg@10
|
571 |
+
value: 0.9157663307482551
|
572 |
+
name: Cosine Ndcg@10
|
573 |
+
- type: cosine_mrr@10
|
574 |
+
value: 0.9009999999999999
|
575 |
+
name: Cosine Mrr@10
|
576 |
+
- type: cosine_map@100
|
577 |
+
value: 0.8893741502029173
|
578 |
+
name: Cosine Map@100
|
579 |
+
- task:
|
580 |
+
type: information-retrieval
|
581 |
+
name: Information Retrieval
|
582 |
+
dataset:
|
583 |
+
name: NanoSCIDOCS
|
584 |
+
type: NanoSCIDOCS
|
585 |
+
metrics:
|
586 |
+
- type: cosine_accuracy@1
|
587 |
+
value: 0.26
|
588 |
+
name: Cosine Accuracy@1
|
589 |
+
- type: cosine_accuracy@3
|
590 |
+
value: 0.46
|
591 |
+
name: Cosine Accuracy@3
|
592 |
+
- type: cosine_accuracy@5
|
593 |
+
value: 0.6
|
594 |
+
name: Cosine Accuracy@5
|
595 |
+
- type: cosine_accuracy@10
|
596 |
+
value: 0.68
|
597 |
+
name: Cosine Accuracy@10
|
598 |
+
- type: cosine_precision@1
|
599 |
+
value: 0.26
|
600 |
+
name: Cosine Precision@1
|
601 |
+
- type: cosine_precision@3
|
602 |
+
value: 0.20666666666666664
|
603 |
+
name: Cosine Precision@3
|
604 |
+
- type: cosine_precision@5
|
605 |
+
value: 0.184
|
606 |
+
name: Cosine Precision@5
|
607 |
+
- type: cosine_precision@10
|
608 |
+
value: 0.126
|
609 |
+
name: Cosine Precision@10
|
610 |
+
- type: cosine_recall@1
|
611 |
+
value: 0.054000000000000006
|
612 |
+
name: Cosine Recall@1
|
613 |
+
- type: cosine_recall@3
|
614 |
+
value: 0.12866666666666668
|
615 |
+
name: Cosine Recall@3
|
616 |
+
- type: cosine_recall@5
|
617 |
+
value: 0.18966666666666668
|
618 |
+
name: Cosine Recall@5
|
619 |
+
- type: cosine_recall@10
|
620 |
+
value: 0.25866666666666666
|
621 |
+
name: Cosine Recall@10
|
622 |
+
- type: cosine_ndcg@10
|
623 |
+
value: 0.24181947685643387
|
624 |
+
name: Cosine Ndcg@10
|
625 |
+
- type: cosine_mrr@10
|
626 |
+
value: 0.3803571428571429
|
627 |
+
name: Cosine Mrr@10
|
628 |
+
- type: cosine_map@100
|
629 |
+
value: 0.18652061021747493
|
630 |
+
name: Cosine Map@100
|
631 |
+
- task:
|
632 |
+
type: information-retrieval
|
633 |
+
name: Information Retrieval
|
634 |
+
dataset:
|
635 |
+
name: NanoArguAna
|
636 |
+
type: NanoArguAna
|
637 |
+
metrics:
|
638 |
+
- type: cosine_accuracy@1
|
639 |
+
value: 0.16
|
640 |
+
name: Cosine Accuracy@1
|
641 |
+
- type: cosine_accuracy@3
|
642 |
+
value: 0.58
|
643 |
+
name: Cosine Accuracy@3
|
644 |
+
- type: cosine_accuracy@5
|
645 |
+
value: 0.74
|
646 |
+
name: Cosine Accuracy@5
|
647 |
+
- type: cosine_accuracy@10
|
648 |
+
value: 0.84
|
649 |
+
name: Cosine Accuracy@10
|
650 |
+
- type: cosine_precision@1
|
651 |
+
value: 0.16
|
652 |
+
name: Cosine Precision@1
|
653 |
+
- type: cosine_precision@3
|
654 |
+
value: 0.19333333333333336
|
655 |
+
name: Cosine Precision@3
|
656 |
+
- type: cosine_precision@5
|
657 |
+
value: 0.14800000000000002
|
658 |
+
name: Cosine Precision@5
|
659 |
+
- type: cosine_precision@10
|
660 |
+
value: 0.08399999999999999
|
661 |
+
name: Cosine Precision@10
|
662 |
+
- type: cosine_recall@1
|
663 |
+
value: 0.16
|
664 |
+
name: Cosine Recall@1
|
665 |
+
- type: cosine_recall@3
|
666 |
+
value: 0.58
|
667 |
+
name: Cosine Recall@3
|
668 |
+
- type: cosine_recall@5
|
669 |
+
value: 0.74
|
670 |
+
name: Cosine Recall@5
|
671 |
+
- type: cosine_recall@10
|
672 |
+
value: 0.84
|
673 |
+
name: Cosine Recall@10
|
674 |
+
- type: cosine_ndcg@10
|
675 |
+
value: 0.5045313323048141
|
676 |
+
name: Cosine Ndcg@10
|
677 |
+
- type: cosine_mrr@10
|
678 |
+
value: 0.3963333333333333
|
679 |
+
name: Cosine Mrr@10
|
680 |
+
- type: cosine_map@100
|
681 |
+
value: 0.40074428294573644
|
682 |
+
name: Cosine Map@100
|
683 |
+
- task:
|
684 |
+
type: information-retrieval
|
685 |
+
name: Information Retrieval
|
686 |
+
dataset:
|
687 |
+
name: NanoSciFact
|
688 |
+
type: NanoSciFact
|
689 |
+
metrics:
|
690 |
+
- type: cosine_accuracy@1
|
691 |
+
value: 0.42
|
692 |
+
name: Cosine Accuracy@1
|
693 |
+
- type: cosine_accuracy@3
|
694 |
+
value: 0.58
|
695 |
+
name: Cosine Accuracy@3
|
696 |
+
- type: cosine_accuracy@5
|
697 |
+
value: 0.62
|
698 |
+
name: Cosine Accuracy@5
|
699 |
+
- type: cosine_accuracy@10
|
700 |
+
value: 0.64
|
701 |
+
name: Cosine Accuracy@10
|
702 |
+
- type: cosine_precision@1
|
703 |
+
value: 0.42
|
704 |
+
name: Cosine Precision@1
|
705 |
+
- type: cosine_precision@3
|
706 |
+
value: 0.20666666666666667
|
707 |
+
name: Cosine Precision@3
|
708 |
+
- type: cosine_precision@5
|
709 |
+
value: 0.14
|
710 |
+
name: Cosine Precision@5
|
711 |
+
- type: cosine_precision@10
|
712 |
+
value: 0.07600000000000001
|
713 |
+
name: Cosine Precision@10
|
714 |
+
- type: cosine_recall@1
|
715 |
+
value: 0.4
|
716 |
+
name: Cosine Recall@1
|
717 |
+
- type: cosine_recall@3
|
718 |
+
value: 0.56
|
719 |
+
name: Cosine Recall@3
|
720 |
+
- type: cosine_recall@5
|
721 |
+
value: 0.605
|
722 |
+
name: Cosine Recall@5
|
723 |
+
- type: cosine_recall@10
|
724 |
+
value: 0.64
|
725 |
+
name: Cosine Recall@10
|
726 |
+
- type: cosine_ndcg@10
|
727 |
+
value: 0.5380316349319392
|
728 |
+
name: Cosine Ndcg@10
|
729 |
+
- type: cosine_mrr@10
|
730 |
+
value: 0.5056666666666666
|
731 |
+
name: Cosine Mrr@10
|
732 |
+
- type: cosine_map@100
|
733 |
+
value: 0.5079821472790408
|
734 |
+
name: Cosine Map@100
|
735 |
+
- task:
|
736 |
+
type: information-retrieval
|
737 |
+
name: Information Retrieval
|
738 |
+
dataset:
|
739 |
+
name: NanoTouche2020
|
740 |
+
type: NanoTouche2020
|
741 |
+
metrics:
|
742 |
+
- type: cosine_accuracy@1
|
743 |
+
value: 0.4489795918367347
|
744 |
+
name: Cosine Accuracy@1
|
745 |
+
- type: cosine_accuracy@3
|
746 |
+
value: 0.8979591836734694
|
747 |
+
name: Cosine Accuracy@3
|
748 |
+
- type: cosine_accuracy@5
|
749 |
+
value: 0.9183673469387755
|
750 |
+
name: Cosine Accuracy@5
|
751 |
+
- type: cosine_accuracy@10
|
752 |
+
value: 0.9795918367346939
|
753 |
+
name: Cosine Accuracy@10
|
754 |
+
- type: cosine_precision@1
|
755 |
+
value: 0.4489795918367347
|
756 |
+
name: Cosine Precision@1
|
757 |
+
- type: cosine_precision@3
|
758 |
+
value: 0.4965986394557823
|
759 |
+
name: Cosine Precision@3
|
760 |
+
- type: cosine_precision@5
|
761 |
+
value: 0.45714285714285713
|
762 |
+
name: Cosine Precision@5
|
763 |
+
- type: cosine_precision@10
|
764 |
+
value: 0.38979591836734706
|
765 |
+
name: Cosine Precision@10
|
766 |
+
- type: cosine_recall@1
|
767 |
+
value: 0.03475887574057735
|
768 |
+
name: Cosine Recall@1
|
769 |
+
- type: cosine_recall@3
|
770 |
+
value: 0.11109807516506923
|
771 |
+
name: Cosine Recall@3
|
772 |
+
- type: cosine_recall@5
|
773 |
+
value: 0.1656210426064535
|
774 |
+
name: Cosine Recall@5
|
775 |
+
- type: cosine_recall@10
|
776 |
+
value: 0.2684807614936963
|
777 |
+
name: Cosine Recall@10
|
778 |
+
- type: cosine_ndcg@10
|
779 |
+
value: 0.43233093716838594
|
780 |
+
name: Cosine Ndcg@10
|
781 |
+
- type: cosine_mrr@10
|
782 |
+
value: 0.6532555879494653
|
783 |
+
name: Cosine Mrr@10
|
784 |
+
- type: cosine_map@100
|
785 |
+
value: 0.33493945959592186
|
786 |
+
name: Cosine Map@100
|
787 |
+
- task:
|
788 |
+
type: nano-beir
|
789 |
+
name: Nano BEIR
|
790 |
+
dataset:
|
791 |
+
name: NanoBEIR mean
|
792 |
+
type: NanoBEIR_mean
|
793 |
+
metrics:
|
794 |
+
- type: cosine_accuracy@1
|
795 |
+
value: 0.4053061224489796
|
796 |
+
name: Cosine Accuracy@1
|
797 |
+
- type: cosine_accuracy@3
|
798 |
+
value: 0.6213814756671899
|
799 |
+
name: Cosine Accuracy@3
|
800 |
+
- type: cosine_accuracy@5
|
801 |
+
value: 0.6891051805337519
|
802 |
+
name: Cosine Accuracy@5
|
803 |
+
- type: cosine_accuracy@10
|
804 |
+
value: 0.7676609105180533
|
805 |
+
name: Cosine Accuracy@10
|
806 |
+
- type: cosine_precision@1
|
807 |
+
value: 0.4053061224489796
|
808 |
+
name: Cosine Precision@1
|
809 |
+
- type: cosine_precision@3
|
810 |
+
value: 0.2694819466248038
|
811 |
+
name: Cosine Precision@3
|
812 |
+
- type: cosine_precision@5
|
813 |
+
value: 0.20962637362637365
|
814 |
+
name: Cosine Precision@5
|
815 |
+
- type: cosine_precision@10
|
816 |
+
value: 0.14567660910518054
|
817 |
+
name: Cosine Precision@10
|
818 |
+
- type: cosine_recall@1
|
819 |
+
value: 0.24693944527453943
|
820 |
+
name: Cosine Recall@1
|
821 |
+
- type: cosine_recall@3
|
822 |
+
value: 0.3915472856287718
|
823 |
+
name: Cosine Recall@3
|
824 |
+
- type: cosine_recall@5
|
825 |
+
value: 0.4541123273847895
|
826 |
+
name: Cosine Recall@5
|
827 |
+
- type: cosine_recall@10
|
828 |
+
value: 0.5280272058403178
|
829 |
+
name: Cosine Recall@10
|
830 |
+
- type: cosine_ndcg@10
|
831 |
+
value: 0.4727642081975526
|
832 |
+
name: Cosine Ndcg@10
|
833 |
+
- type: cosine_mrr@10
|
834 |
+
value: 0.5268627619545987
|
835 |
+
name: Cosine Mrr@10
|
836 |
+
- type: cosine_map@100
|
837 |
+
value: 0.40266180779497585
|
838 |
+
name: Cosine Map@100
|
839 |
+
---
|
840 |
+
|
841 |
+
# bert-base-uncased adapter finetuned on GooAQ pairs
|
842 |
+
|
843 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
844 |
+
|
845 |
+
## Model Details
|
846 |
+
|
847 |
+
### Model Description
|
848 |
+
- **Model Type:** Sentence Transformer
|
849 |
+
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
850 |
+
- **Maximum Sequence Length:** 512 tokens
|
851 |
+
- **Output Dimensionality:** 768 dimensions
|
852 |
+
- **Similarity Function:** Cosine Similarity
|
853 |
+
- **Training Dataset:**
|
854 |
+
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
|
855 |
+
- **Language:** en
|
856 |
+
- **License:** apache-2.0
|
857 |
+
|
858 |
+
### Model Sources
|
859 |
+
|
860 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
861 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
862 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
863 |
+
|
864 |
+
### Full Model Architecture
|
865 |
+
|
866 |
+
```
|
867 |
+
SentenceTransformer(
|
868 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
869 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
870 |
+
)
|
871 |
+
```
|
872 |
+
|
873 |
+
## Usage
|
874 |
+
|
875 |
+
### Direct Usage (Sentence Transformers)
|
876 |
+
|
877 |
+
First install the Sentence Transformers library:
|
878 |
+
|
879 |
+
```bash
|
880 |
+
pip install -U sentence-transformers
|
881 |
+
```
|
882 |
+
|
883 |
+
Then you can load this model and run inference.
|
884 |
+
```python
|
885 |
+
from sentence_transformers import SentenceTransformer
|
886 |
+
|
887 |
+
# Download from the 🤗 Hub
|
888 |
+
model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq")
|
889 |
+
# Run inference
|
890 |
+
sentences = [
|
891 |
+
'how can i download youtube videos with internet download manager?',
|
892 |
+
"['Go to settings and then click on extensions (top left side in chrome).', 'Minimise your browser and open the location (folder) where IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this file to your chrome browser and drop to install the IDM extension.']",
|
893 |
+
"Coca-Cola might rot your teeth and load your body with sugar and calories, but it's actually an effective and safe first line of treatment for some stomach blockages, researchers say.",
|
894 |
+
]
|
895 |
+
embeddings = model.encode(sentences)
|
896 |
+
print(embeddings.shape)
|
897 |
+
# [3, 768]
|
898 |
+
|
899 |
+
# Get the similarity scores for the embeddings
|
900 |
+
similarities = model.similarity(embeddings, embeddings)
|
901 |
+
print(similarities.shape)
|
902 |
+
# [3, 3]
|
903 |
+
```
|
904 |
+
|
905 |
+
<!--
|
906 |
+
### Direct Usage (Transformers)
|
907 |
+
|
908 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
909 |
+
|
910 |
+
</details>
|
911 |
+
-->
|
912 |
+
|
913 |
+
<!--
|
914 |
+
### Downstream Usage (Sentence Transformers)
|
915 |
+
|
916 |
+
You can finetune this model on your own dataset.
|
917 |
+
|
918 |
+
<details><summary>Click to expand</summary>
|
919 |
+
|
920 |
+
</details>
|
921 |
+
-->
|
922 |
+
|
923 |
+
<!--
|
924 |
+
### Out-of-Scope Use
|
925 |
+
|
926 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
927 |
+
-->
|
928 |
+
|
929 |
+
## Evaluation
|
930 |
+
|
931 |
+
### Metrics
|
932 |
+
|
933 |
+
#### Information Retrieval
|
934 |
+
|
935 |
+
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
|
936 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
937 |
+
|
938 |
+
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|
939 |
+
|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
|
940 |
+
| cosine_accuracy@1 | 0.24 | 0.54 | 0.54 | 0.24 | 0.6 | 0.28 | 0.32 | 0.38 | 0.84 | 0.26 | 0.16 | 0.42 | 0.449 |
|
941 |
+
| cosine_accuracy@3 | 0.42 | 0.8 | 0.82 | 0.4 | 0.68 | 0.48 | 0.48 | 0.54 | 0.94 | 0.46 | 0.58 | 0.58 | 0.898 |
|
942 |
+
| cosine_accuracy@5 | 0.46 | 0.84 | 0.9 | 0.5 | 0.74 | 0.54 | 0.5 | 0.62 | 0.98 | 0.6 | 0.74 | 0.62 | 0.9184 |
|
943 |
+
| cosine_accuracy@10 | 0.56 | 0.92 | 0.92 | 0.6 | 0.88 | 0.66 | 0.56 | 0.74 | 1.0 | 0.68 | 0.84 | 0.64 | 0.9796 |
|
944 |
+
| cosine_precision@1 | 0.24 | 0.54 | 0.54 | 0.24 | 0.6 | 0.28 | 0.32 | 0.38 | 0.84 | 0.26 | 0.16 | 0.42 | 0.449 |
|
945 |
+
| cosine_precision@3 | 0.16 | 0.4867 | 0.2733 | 0.16 | 0.2867 | 0.16 | 0.3067 | 0.18 | 0.3867 | 0.2067 | 0.1933 | 0.2067 | 0.4966 |
|
946 |
+
| cosine_precision@5 | 0.108 | 0.444 | 0.184 | 0.14 | 0.192 | 0.108 | 0.244 | 0.128 | 0.248 | 0.184 | 0.148 | 0.14 | 0.4571 |
|
947 |
+
| cosine_precision@10 | 0.07 | 0.39 | 0.096 | 0.088 | 0.118 | 0.066 | 0.184 | 0.076 | 0.13 | 0.126 | 0.084 | 0.076 | 0.3898 |
|
948 |
+
| cosine_recall@1 | 0.1317 | 0.0468 | 0.53 | 0.1147 | 0.3 | 0.28 | 0.0209 | 0.38 | 0.7573 | 0.054 | 0.16 | 0.4 | 0.0348 |
|
949 |
+
| cosine_recall@3 | 0.2083 | 0.1112 | 0.7767 | 0.2287 | 0.43 | 0.48 | 0.0534 | 0.51 | 0.912 | 0.1287 | 0.58 | 0.56 | 0.1111 |
|
950 |
+
| cosine_recall@5 | 0.2417 | 0.1583 | 0.8567 | 0.3166 | 0.48 | 0.54 | 0.0639 | 0.6 | 0.946 | 0.1897 | 0.74 | 0.605 | 0.1656 |
|
951 |
+
| cosine_recall@10 | 0.2967 | 0.2555 | 0.8867 | 0.3986 | 0.59 | 0.66 | 0.0805 | 0.71 | 0.9793 | 0.2587 | 0.84 | 0.64 | 0.2685 |
|
952 |
+
| **cosine_ndcg@10** | **0.2552** | **0.4644** | **0.7349** | **0.2926** | **0.5292** | **0.468** | **0.2307** | **0.5387** | **0.9158** | **0.2418** | **0.5045** | **0.538** | **0.4323** |
|
953 |
+
| cosine_mrr@10 | 0.3379 | 0.6797 | 0.6962 | 0.3385 | 0.6639 | 0.4079 | 0.3979 | 0.4905 | 0.901 | 0.3804 | 0.3963 | 0.5057 | 0.6533 |
|
954 |
+
| cosine_map@100 | 0.2076 | 0.3253 | 0.6788 | 0.2372 | 0.4523 | 0.4276 | 0.0966 | 0.4896 | 0.8894 | 0.1865 | 0.4007 | 0.508 | 0.3349 |
|
955 |
+
|
956 |
+
#### Nano BEIR
|
957 |
+
|
958 |
+
* Dataset: `NanoBEIR_mean`
|
959 |
+
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator)
|
960 |
+
|
961 |
+
| Metric | Value |
|
962 |
+
|:--------------------|:-----------|
|
963 |
+
| cosine_accuracy@1 | 0.4053 |
|
964 |
+
| cosine_accuracy@3 | 0.6214 |
|
965 |
+
| cosine_accuracy@5 | 0.6891 |
|
966 |
+
| cosine_accuracy@10 | 0.7677 |
|
967 |
+
| cosine_precision@1 | 0.4053 |
|
968 |
+
| cosine_precision@3 | 0.2695 |
|
969 |
+
| cosine_precision@5 | 0.2096 |
|
970 |
+
| cosine_precision@10 | 0.1457 |
|
971 |
+
| cosine_recall@1 | 0.2469 |
|
972 |
+
| cosine_recall@3 | 0.3915 |
|
973 |
+
| cosine_recall@5 | 0.4541 |
|
974 |
+
| cosine_recall@10 | 0.528 |
|
975 |
+
| **cosine_ndcg@10** | **0.4728** |
|
976 |
+
| cosine_mrr@10 | 0.5269 |
|
977 |
+
| cosine_map@100 | 0.4027 |
|
978 |
+
|
979 |
+
<!--
|
980 |
+
## Bias, Risks and Limitations
|
981 |
+
|
982 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
983 |
+
-->
|
984 |
+
|
985 |
+
<!--
|
986 |
+
### Recommendations
|
987 |
+
|
988 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
989 |
+
-->
|
990 |
+
|
991 |
+
## Training Details
|
992 |
+
|
993 |
+
### Training Dataset
|
994 |
+
|
995 |
+
#### gooaq
|
996 |
+
|
997 |
+
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
998 |
+
* Size: 3,012,496 training samples
|
999 |
+
* Columns: <code>question</code> and <code>answer</code>
|
1000 |
+
* Approximate statistics based on the first 1000 samples:
|
1001 |
+
| | question | answer |
|
1002 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
1003 |
+
| type | string | string |
|
1004 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.86 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.48 tokens</li><li>max: 138 tokens</li></ul> |
|
1005 |
+
* Samples:
|
1006 |
+
| question | answer |
|
1007 |
+
|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
1008 |
+
| <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> |
|
1009 |
+
| <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> |
|
1010 |
+
| <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> |
|
1011 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
1012 |
+
```json
|
1013 |
+
{
|
1014 |
+
"loss": "CachedMultipleNegativesRankingLoss",
|
1015 |
+
"matryoshka_dims": [
|
1016 |
+
768,
|
1017 |
+
512,
|
1018 |
+
256,
|
1019 |
+
128,
|
1020 |
+
64,
|
1021 |
+
32
|
1022 |
+
],
|
1023 |
+
"matryoshka_weights": [
|
1024 |
+
1,
|
1025 |
+
1,
|
1026 |
+
1,
|
1027 |
+
1,
|
1028 |
+
1,
|
1029 |
+
1
|
1030 |
+
],
|
1031 |
+
"n_dims_per_step": -1
|
1032 |
+
}
|
1033 |
+
```
|
1034 |
+
|
1035 |
+
### Evaluation Dataset
|
1036 |
+
|
1037 |
+
#### gooaq
|
1038 |
+
|
1039 |
+
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
1040 |
+
* Size: 3,012,496 evaluation samples
|
1041 |
+
* Columns: <code>question</code> and <code>answer</code>
|
1042 |
+
* Approximate statistics based on the first 1000 samples:
|
1043 |
+
| | question | answer |
|
1044 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
1045 |
+
| type | string | string |
|
1046 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
|
1047 |
+
* Samples:
|
1048 |
+
| question | answer |
|
1049 |
+
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
1050 |
+
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
|
1051 |
+
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
|
1052 |
+
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
|
1053 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
1054 |
+
```json
|
1055 |
+
{
|
1056 |
+
"loss": "CachedMultipleNegativesRankingLoss",
|
1057 |
+
"matryoshka_dims": [
|
1058 |
+
768,
|
1059 |
+
512,
|
1060 |
+
256,
|
1061 |
+
128,
|
1062 |
+
64,
|
1063 |
+
32
|
1064 |
+
],
|
1065 |
+
"matryoshka_weights": [
|
1066 |
+
1,
|
1067 |
+
1,
|
1068 |
+
1,
|
1069 |
+
1,
|
1070 |
+
1,
|
1071 |
+
1
|
1072 |
+
],
|
1073 |
+
"n_dims_per_step": -1
|
1074 |
+
}
|
1075 |
+
```
|
1076 |
+
|
1077 |
+
### Training Hyperparameters
|
1078 |
+
#### Non-Default Hyperparameters
|
1079 |
+
|
1080 |
+
- `eval_strategy`: steps
|
1081 |
+
- `per_device_train_batch_size`: 1024
|
1082 |
+
- `per_device_eval_batch_size`: 1024
|
1083 |
+
- `learning_rate`: 2e-05
|
1084 |
+
- `num_train_epochs`: 1
|
1085 |
+
- `warmup_ratio`: 0.1
|
1086 |
+
- `seed`: 12
|
1087 |
+
- `bf16`: True
|
1088 |
+
- `batch_sampler`: no_duplicates
|
1089 |
+
|
1090 |
+
#### All Hyperparameters
|
1091 |
+
<details><summary>Click to expand</summary>
|
1092 |
+
|
1093 |
+
- `overwrite_output_dir`: False
|
1094 |
+
- `do_predict`: False
|
1095 |
+
- `eval_strategy`: steps
|
1096 |
+
- `prediction_loss_only`: True
|
1097 |
+
- `per_device_train_batch_size`: 1024
|
1098 |
+
- `per_device_eval_batch_size`: 1024
|
1099 |
+
- `per_gpu_train_batch_size`: None
|
1100 |
+
- `per_gpu_eval_batch_size`: None
|
1101 |
+
- `gradient_accumulation_steps`: 1
|
1102 |
+
- `eval_accumulation_steps`: None
|
1103 |
+
- `torch_empty_cache_steps`: None
|
1104 |
+
- `learning_rate`: 2e-05
|
1105 |
+
- `weight_decay`: 0.0
|
1106 |
+
- `adam_beta1`: 0.9
|
1107 |
+
- `adam_beta2`: 0.999
|
1108 |
+
- `adam_epsilon`: 1e-08
|
1109 |
+
- `max_grad_norm`: 1.0
|
1110 |
+
- `num_train_epochs`: 1
|
1111 |
+
- `max_steps`: -1
|
1112 |
+
- `lr_scheduler_type`: linear
|
1113 |
+
- `lr_scheduler_kwargs`: {}
|
1114 |
+
- `warmup_ratio`: 0.1
|
1115 |
+
- `warmup_steps`: 0
|
1116 |
+
- `log_level`: passive
|
1117 |
+
- `log_level_replica`: warning
|
1118 |
+
- `log_on_each_node`: True
|
1119 |
+
- `logging_nan_inf_filter`: True
|
1120 |
+
- `save_safetensors`: True
|
1121 |
+
- `save_on_each_node`: False
|
1122 |
+
- `save_only_model`: False
|
1123 |
+
- `restore_callback_states_from_checkpoint`: False
|
1124 |
+
- `no_cuda`: False
|
1125 |
+
- `use_cpu`: False
|
1126 |
+
- `use_mps_device`: False
|
1127 |
+
- `seed`: 12
|
1128 |
+
- `data_seed`: None
|
1129 |
+
- `jit_mode_eval`: False
|
1130 |
+
- `use_ipex`: False
|
1131 |
+
- `bf16`: True
|
1132 |
+
- `fp16`: False
|
1133 |
+
- `fp16_opt_level`: O1
|
1134 |
+
- `half_precision_backend`: auto
|
1135 |
+
- `bf16_full_eval`: False
|
1136 |
+
- `fp16_full_eval`: False
|
1137 |
+
- `tf32`: None
|
1138 |
+
- `local_rank`: 0
|
1139 |
+
- `ddp_backend`: None
|
1140 |
+
- `tpu_num_cores`: None
|
1141 |
+
- `tpu_metrics_debug`: False
|
1142 |
+
- `debug`: []
|
1143 |
+
- `dataloader_drop_last`: False
|
1144 |
+
- `dataloader_num_workers`: 0
|
1145 |
+
- `dataloader_prefetch_factor`: None
|
1146 |
+
- `past_index`: -1
|
1147 |
+
- `disable_tqdm`: False
|
1148 |
+
- `remove_unused_columns`: True
|
1149 |
+
- `label_names`: None
|
1150 |
+
- `load_best_model_at_end`: False
|
1151 |
+
- `ignore_data_skip`: False
|
1152 |
+
- `fsdp`: []
|
1153 |
+
- `fsdp_min_num_params`: 0
|
1154 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1155 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1156 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1157 |
+
- `deepspeed`: None
|
1158 |
+
- `label_smoothing_factor`: 0.0
|
1159 |
+
- `optim`: adamw_torch
|
1160 |
+
- `optim_args`: None
|
1161 |
+
- `adafactor`: False
|
1162 |
+
- `group_by_length`: False
|
1163 |
+
- `length_column_name`: length
|
1164 |
+
- `ddp_find_unused_parameters`: None
|
1165 |
+
- `ddp_bucket_cap_mb`: None
|
1166 |
+
- `ddp_broadcast_buffers`: False
|
1167 |
+
- `dataloader_pin_memory`: True
|
1168 |
+
- `dataloader_persistent_workers`: False
|
1169 |
+
- `skip_memory_metrics`: True
|
1170 |
+
- `use_legacy_prediction_loop`: False
|
1171 |
+
- `push_to_hub`: False
|
1172 |
+
- `resume_from_checkpoint`: None
|
1173 |
+
- `hub_model_id`: None
|
1174 |
+
- `hub_strategy`: every_save
|
1175 |
+
- `hub_private_repo`: False
|
1176 |
+
- `hub_always_push`: False
|
1177 |
+
- `gradient_checkpointing`: False
|
1178 |
+
- `gradient_checkpointing_kwargs`: None
|
1179 |
+
- `include_inputs_for_metrics`: False
|
1180 |
+
- `include_for_metrics`: []
|
1181 |
+
- `eval_do_concat_batches`: True
|
1182 |
+
- `fp16_backend`: auto
|
1183 |
+
- `push_to_hub_model_id`: None
|
1184 |
+
- `push_to_hub_organization`: None
|
1185 |
+
- `mp_parameters`:
|
1186 |
+
- `auto_find_batch_size`: False
|
1187 |
+
- `full_determinism`: False
|
1188 |
+
- `torchdynamo`: None
|
1189 |
+
- `ray_scope`: last
|
1190 |
+
- `ddp_timeout`: 1800
|
1191 |
+
- `torch_compile`: False
|
1192 |
+
- `torch_compile_backend`: None
|
1193 |
+
- `torch_compile_mode`: None
|
1194 |
+
- `dispatch_batches`: None
|
1195 |
+
- `split_batches`: None
|
1196 |
+
- `include_tokens_per_second`: False
|
1197 |
+
- `include_num_input_tokens_seen`: False
|
1198 |
+
- `neftune_noise_alpha`: None
|
1199 |
+
- `optim_target_modules`: None
|
1200 |
+
- `batch_eval_metrics`: False
|
1201 |
+
- `eval_on_start`: False
|
1202 |
+
- `use_liger_kernel`: False
|
1203 |
+
- `eval_use_gather_object`: False
|
1204 |
+
- `average_tokens_across_devices`: False
|
1205 |
+
- `prompts`: None
|
1206 |
+
- `batch_sampler`: no_duplicates
|
1207 |
+
- `multi_dataset_batch_sampler`: proportional
|
1208 |
+
|
1209 |
+
</details>
|
1210 |
+
|
1211 |
+
### Training Logs
|
1212 |
+
| Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|
1213 |
+
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:|
|
1214 |
+
| 0 | 0 | - | - | 0.1046 | 0.2182 | 0.1573 | 0.0575 | 0.2597 | 0.1602 | 0.0521 | 0.0493 | 0.7310 | 0.1320 | 0.2309 | 0.1240 | 0.0970 | 0.1826 |
|
1215 |
+
| 0.0010 | 1 | 28.4268 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1216 |
+
| 0.0256 | 25 | 24.7252 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1217 |
+
| 0.0512 | 50 | 13.3628 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1218 |
+
| 0.0768 | 75 | 7.843 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1219 |
+
| 0.1024 | 100 | 5.7393 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1220 |
+
| 0.1279 | 125 | 4.6576 | 2.3368 | 0.2890 | 0.4610 | 0.7408 | 0.2882 | 0.5446 | 0.4091 | 0.2179 | 0.4664 | 0.9079 | 0.2394 | 0.5433 | 0.5003 | 0.4318 | 0.4646 |
|
1221 |
+
| 0.1535 | 150 | 4.0846 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1222 |
+
| 0.1791 | 175 | 3.7129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1223 |
+
| 0.2047 | 200 | 3.4899 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1224 |
+
| 0.2303 | 225 | 3.3263 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1225 |
+
| 0.2559 | 250 | 3.2013 | 1.6545 | 0.2622 | 0.4744 | 0.7456 | 0.2934 | 0.5371 | 0.4326 | 0.2290 | 0.5157 | 0.9130 | 0.2577 | 0.5189 | 0.5155 | 0.4302 | 0.4712 |
|
1226 |
+
| 0.2815 | 275 | 2.9109 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1227 |
+
| 0.3071 | 300 | 2.9064 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1228 |
+
| 0.3327 | 325 | 2.8215 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1229 |
+
| 0.3582 | 350 | 2.7893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1230 |
+
| 0.3838 | 375 | 2.6663 | 1.4146 | 0.2629 | 0.4657 | 0.7330 | 0.2853 | 0.5299 | 0.4346 | 0.2311 | 0.5216 | 0.9172 | 0.2513 | 0.5133 | 0.5429 | 0.4287 | 0.4706 |
|
1231 |
+
| 0.4094 | 400 | 2.6672 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1232 |
+
| 0.4350 | 425 | 2.5587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1233 |
+
| 0.4606 | 450 | 2.5001 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1234 |
+
| 0.4862 | 475 | 2.4476 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1235 |
+
| 0.5118 | 500 | 2.4127 | 1.2843 | 0.2565 | 0.4668 | 0.7289 | 0.2838 | 0.5392 | 0.4599 | 0.2284 | 0.5238 | 0.9021 | 0.2416 | 0.4971 | 0.5349 | 0.4320 | 0.4688 |
|
1236 |
+
| 0.5374 | 525 | 2.414 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1237 |
+
| 0.5629 | 550 | 2.3723 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1238 |
+
| 0.5885 | 575 | 2.3418 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1239 |
+
| 0.6141 | 600 | 2.2862 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1240 |
+
| 0.6397 | 625 | 2.207 | 1.2078 | 0.2613 | 0.4542 | 0.7382 | 0.2817 | 0.5230 | 0.4664 | 0.2282 | 0.5266 | 0.9095 | 0.2453 | 0.5127 | 0.5414 | 0.4239 | 0.4702 |
|
1241 |
+
| 0.6653 | 650 | 2.2305 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1242 |
+
| 0.6909 | 675 | 2.2409 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1243 |
+
| 0.7165 | 700 | 2.2001 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1244 |
+
| 0.7421 | 725 | 2.1923 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1245 |
+
| 0.7677 | 750 | 2.195 | 1.1538 | 0.2549 | 0.4671 | 0.7333 | 0.2804 | 0.5265 | 0.4659 | 0.2321 | 0.5331 | 0.9086 | 0.2429 | 0.5070 | 0.5430 | 0.4369 | 0.4717 |
|
1246 |
+
| 0.7932 | 775 | 2.1826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1247 |
+
| 0.8188 | 800 | 2.1754 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1248 |
+
| 0.8444 | 825 | 2.1141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1249 |
+
| 0.8700 | 850 | 2.1572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1250 |
+
| 0.8956 | 875 | 2.1126 | 1.1256 | 0.2505 | 0.4622 | 0.7293 | 0.2857 | 0.5286 | 0.4823 | 0.2308 | 0.5397 | 0.9158 | 0.2412 | 0.5050 | 0.5365 | 0.4387 | 0.4728 |
|
1251 |
+
| 0.9212 | 900 | 2.0755 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1252 |
+
| 0.9468 | 925 | 2.1032 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1253 |
+
| 0.9724 | 950 | 2.1211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1254 |
+
| 0.9980 | 975 | 2.0826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
1255 |
+
| 1.0 | 977 | - | - | 0.2552 | 0.4644 | 0.7349 | 0.2926 | 0.5292 | 0.4680 | 0.2307 | 0.5387 | 0.9158 | 0.2418 | 0.5045 | 0.5380 | 0.4323 | 0.4728 |
|
1256 |
+
|
1257 |
+
|
1258 |
+
### Environmental Impact
|
1259 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
1260 |
+
- **Energy Consumed**: 0.624 kWh
|
1261 |
+
- **Carbon Emitted**: 0.243 kg of CO2
|
1262 |
+
- **Hours Used**: 1.619 hours
|
1263 |
+
|
1264 |
+
### Training Hardware
|
1265 |
+
- **On Cloud**: No
|
1266 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
1267 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
1268 |
+
- **RAM Size**: 31.78 GB
|
1269 |
+
|
1270 |
+
### Framework Versions
|
1271 |
+
- Python: 3.11.6
|
1272 |
+
- Sentence Transformers: 3.4.0.dev0
|
1273 |
+
- Transformers: 4.46.2
|
1274 |
+
- PyTorch: 2.5.0+cu121
|
1275 |
+
- Accelerate: 0.35.0.dev0
|
1276 |
+
- Datasets: 2.20.0
|
1277 |
+
- Tokenizers: 0.20.3
|
1278 |
+
|
1279 |
+
## Citation
|
1280 |
+
|
1281 |
+
### BibTeX
|
1282 |
+
|
1283 |
+
#### Sentence Transformers
|
1284 |
+
```bibtex
|
1285 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1286 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1287 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1288 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1289 |
+
month = "11",
|
1290 |
+
year = "2019",
|
1291 |
+
publisher = "Association for Computational Linguistics",
|
1292 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1293 |
+
}
|
1294 |
+
```
|
1295 |
+
|
1296 |
+
#### MatryoshkaLoss
|
1297 |
+
```bibtex
|
1298 |
+
@misc{kusupati2024matryoshka,
|
1299 |
+
title={Matryoshka Representation Learning},
|
1300 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1301 |
+
year={2024},
|
1302 |
+
eprint={2205.13147},
|
1303 |
+
archivePrefix={arXiv},
|
1304 |
+
primaryClass={cs.LG}
|
1305 |
+
}
|
1306 |
+
```
|
1307 |
+
|
1308 |
+
#### CachedMultipleNegativesRankingLoss
|
1309 |
+
```bibtex
|
1310 |
+
@misc{gao2021scaling,
|
1311 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
1312 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
1313 |
+
year={2021},
|
1314 |
+
eprint={2101.06983},
|
1315 |
+
archivePrefix={arXiv},
|
1316 |
+
primaryClass={cs.LG}
|
1317 |
+
}
|
1318 |
+
```
|
1319 |
+
|
1320 |
+
<!--
|
1321 |
+
## Glossary
|
1322 |
+
|
1323 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1324 |
+
-->
|
1325 |
+
|
1326 |
+
<!--
|
1327 |
+
## Model Card Authors
|
1328 |
+
|
1329 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1330 |
+
-->
|
1331 |
+
|
1332 |
+
<!--
|
1333 |
+
## Model Card Contact
|
1334 |
+
|
1335 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1336 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google-bert/bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.46.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0.dev0",
|
4 |
+
"transformers": "4.46.2",
|
5 |
+
"pytorch": "2.5.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48631b3f7961fcdada247f87245236d6eeeddff36196878e476f4ea3e2e28504
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|