File size: 3,473 Bytes
057a369 4f7610c 22c8a5b f7b3330 057a369 4f7610c f0677a6 4f7610c f7b3330 4f7610c f7b3330 c222ab1 f7b3330 22c8a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
language:
- en
pipeline_tag: sentence-similarity
inference: false
---
# Monarch Mixer-BERT
An 80M checkpoint of M2-BERT, pretrained with sequence length 8192, and it has been fine-tuned for long-context retrieval.
Check out the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109) and our [blog post]() on retrieval for more on how we trained this model for long sequence.
This model was trained by Jon Saad-Falcon, Dan Fu, and Simran Arora.
Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it!
## How to use
You can load this model using Hugging Face `AutoModel`:
```python
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(
"togethercomputer/m2-bert-80M-8k-retrieval",
trust_remote_code=True
)
```
You should expect to see a large error message about unused parameters for FlashFFTConv.
If you'd like to load the model with FlashFFTConv, you can check out our [GitHub](https://github.com/HazyResearch/m2/tree/main).
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
max_seq_length = 8192
testing_string = "Every morning, I make a cup of coffee to start my day."
model = AutoModelForSequenceClassification.from_pretrained(
"togethercomputer/m2-bert-80M-8k-retrieval",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"bert-base-uncased",
model_max_length=max_seq_length
)
input_ids = tokenizer(
[testing_string],
return_tensors="pt",
padding="max_length",
return_token_type_ids=False,
truncation=True,
max_length=max_seq_length
)
outputs = model(**input_ids)
embeddings = outputs['sentence_embedding']
```
You can also get embeddings from this model using the Together API as follows (you can find your API key [here](https://api.together.xyz/settings/api-keys)):
```python
import os
import requests
def generate_together_embeddings(text: str, model_api_string: str, api_key: str):
url = "https://api.together.xyz/api/v1/embeddings"
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {api_key}"
}
session = requests.Session()
response = session.post(
url,
headers=headers,
json={
"input": text,
"model": model_api_string
}
)
if response.status_code != 200:
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}")
return response.json()['data'][0]['embedding']
print(generate_together_embeddings(
'Hello world',
'togethercomputer/m2-bert-80M-8k-retrieval',
os.environ['TOGETHER_API_KEY'])[:10]
)
```
## Acknowledgments
Alycia Lee helped with AutoModel support.
## Citation
If you use this model, or otherwise found our work valuable, you can cite us as follows:
```
@inproceedings{fu2023monarch,
title={Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture},
author={Fu, Daniel Y and Arora, Simran and Grogan, Jessica and Johnson, Isys and Eyuboglu, Sabri and Thomas, Armin W and Spector, Benjamin and Poli, Michael and Rudra, Atri and R{\'e}, Christopher},
booktitle={Advances in Neural Information Processing Systems},
year={2023}
}
``` |