update readme
Browse files
README.md
CHANGED
@@ -4,10 +4,9 @@ language:
|
|
4 |
- en
|
5 |
---
|
6 |
|
7 |
-
# RedPajama-
|
8 |
|
9 |
-
RedPajama-
|
10 |
-
It is further fine-tuned on GPT-JT's datasets enhance zero/few-shot in-context learning.
|
11 |
|
12 |
## Model Details
|
13 |
- **Developed by**: Together Computer.
|
@@ -18,52 +17,115 @@ It is further fine-tuned on GPT-JT's datasets enhance zero/few-shot in-context l
|
|
18 |
|
19 |
# Quick Start
|
20 |
|
|
|
|
|
21 |
## GPU Inference
|
22 |
|
23 |
This requires a GPU with 8GB memory.
|
|
|
24 |
```python
|
|
|
|
|
25 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# init
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
28 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
29 |
model = model.to('cuda:0')
|
30 |
# infer
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
print(output_str)
|
|
|
|
|
|
|
35 |
```
|
36 |
|
37 |
## GPU Inference in Int8
|
38 |
|
39 |
This requires a GPU with 6GB memory.
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
```python
|
|
|
|
|
42 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# init
|
44 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
45 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
|
|
46 |
# infer
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
print(output_str)
|
|
|
|
|
|
|
51 |
```
|
52 |
|
53 |
## CPU Inference
|
54 |
|
55 |
```python
|
|
|
|
|
56 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# init
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-
|
59 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-
|
60 |
# infer
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
print(output_str)
|
|
|
|
|
|
|
65 |
```
|
66 |
|
|
|
|
|
67 |
|
68 |
# Uses
|
69 |
|
@@ -123,7 +185,7 @@ Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/data
|
|
123 |
- **Hardware:** 8 A100
|
124 |
- **Optimizer:** Adam
|
125 |
- **Gradient Accumulations**: 1
|
126 |
-
- **Num of Tokens:**
|
127 |
- **Learning rate:** 1e-5
|
128 |
|
129 |
## Community
|
|
|
4 |
- en
|
5 |
---
|
6 |
|
7 |
+
# RedPajama-Instruct-INCITE-2.8B
|
8 |
|
9 |
+
RedPajama-Instruct-INCITE-2.8B-v1, is a large transformer-based language model developed by Together Computer and trained on the RedPajama-Data-1T dataset.
|
|
|
10 |
|
11 |
## Model Details
|
12 |
- **Developed by**: Together Computer.
|
|
|
17 |
|
18 |
# Quick Start
|
19 |
|
20 |
+
Please note that the model requires `transformers` version >= 4.25.1.
|
21 |
+
|
22 |
## GPU Inference
|
23 |
|
24 |
This requires a GPU with 8GB memory.
|
25 |
+
|
26 |
```python
|
27 |
+
import torch
|
28 |
+
import transformers
|
29 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
30 |
+
|
31 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
32 |
+
|
33 |
+
# check transformers version
|
34 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
35 |
+
|
36 |
# init
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1")
|
38 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1", torch_dtype=torch.float16)
|
39 |
model = model.to('cuda:0')
|
40 |
# infer
|
41 |
+
prompt = "Q: The capital of France is?\nA:"
|
42 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
43 |
+
input_length = inputs.input_ids.shape[1]
|
44 |
+
outputs = model.generate(
|
45 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
46 |
+
)
|
47 |
+
token = outputs.sequences[0, input_length:]
|
48 |
+
output_str = tokenizer.decode(token)
|
49 |
print(output_str)
|
50 |
+
"""
|
51 |
+
Paris
|
52 |
+
"""
|
53 |
```
|
54 |
|
55 |
## GPU Inference in Int8
|
56 |
|
57 |
This requires a GPU with 6GB memory.
|
58 |
|
59 |
+
To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:
|
60 |
+
|
61 |
+
```bash
|
62 |
+
pip install accelerate
|
63 |
+
pip install bitsandbytes
|
64 |
+
```
|
65 |
+
|
66 |
+
Then you can run inference with int8 as follows:
|
67 |
+
|
68 |
```python
|
69 |
+
import torch
|
70 |
+
import transformers
|
71 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
+
|
73 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
74 |
+
|
75 |
+
# check transformers version
|
76 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
77 |
+
|
78 |
# init
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1")
|
80 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
|
81 |
+
|
82 |
# infer
|
83 |
+
prompt = "Q: The capital of France is?\nA:"
|
84 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
85 |
+
input_length = inputs.input_ids.shape[1]
|
86 |
+
outputs = model.generate(
|
87 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
88 |
+
)
|
89 |
+
token = outputs.sequences[0, input_length:]
|
90 |
+
output_str = tokenizer.decode(token)
|
91 |
print(output_str)
|
92 |
+
"""
|
93 |
+
Paris
|
94 |
+
"""
|
95 |
```
|
96 |
|
97 |
## CPU Inference
|
98 |
|
99 |
```python
|
100 |
+
import torch
|
101 |
+
import transformers
|
102 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
103 |
+
|
104 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
105 |
+
|
106 |
+
# check transformers version
|
107 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
108 |
+
|
109 |
# init
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1")
|
111 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-Instruct-INCITE-2.8B-v1", torch_dtype=torch.bfloat16)
|
112 |
# infer
|
113 |
+
prompt = "Q: The capital of France is?\nA:"
|
114 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
115 |
+
input_length = inputs.input_ids.shape[1]
|
116 |
+
outputs = model.generate(
|
117 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
118 |
+
)
|
119 |
+
token = outputs.sequences[0, input_length:]
|
120 |
+
output_str = tokenizer.decode(token)
|
121 |
print(output_str)
|
122 |
+
"""
|
123 |
+
Paris
|
124 |
+
"""
|
125 |
```
|
126 |
|
127 |
+
Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference.
|
128 |
+
|
129 |
|
130 |
# Uses
|
131 |
|
|
|
185 |
- **Hardware:** 8 A100
|
186 |
- **Optimizer:** Adam
|
187 |
- **Gradient Accumulations**: 1
|
188 |
+
- **Num of Tokens:** 131M tokens
|
189 |
- **Learning rate:** 1e-5
|
190 |
|
191 |
## Community
|