tnavin commited on
Commit
a046574
1 Parent(s): dd8b9d5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wnut_17
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-base-uncased-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wnut_17
20
+ type: wnut_17
21
+ args: wnut_17
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.5899772209567198
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.4117647058823529
29
+ - name: F1
30
+ type: f1
31
+ value: 0.4850187265917604
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9304392705585502
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # distilbert-base-uncased-finetuned-ner
41
+
42
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.3202
45
+ - Precision: 0.5900
46
+ - Recall: 0.4118
47
+ - F1: 0.4850
48
+ - Accuracy: 0.9304
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 16
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 1.0 | 213 | 0.3469 | 0.5480 | 0.2814 | 0.3718 | 0.9193 |
80
+ | No log | 2.0 | 426 | 0.3135 | 0.5909 | 0.3903 | 0.4701 | 0.9281 |
81
+ | 0.1903 | 3.0 | 639 | 0.3202 | 0.5900 | 0.4118 | 0.4850 | 0.9304 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.20.1
87
+ - Pytorch 1.11.0
88
+ - Datasets 2.1.0
89
+ - Tokenizers 0.12.1