File size: 2,046 Bytes
26770c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- en
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: xlm-roberta-large-qqp-100
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QQP
type: tmnam20/VieGLUE
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.6318327974276527
- name: F1
type: f1
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-qqp-100
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6726
- Accuracy: 0.6318
- F1: 0.0
- Combined Score: 0.3159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:--------------:|
| 0.6588 | 0.88 | 10000 | 0.6582 | 0.6318 | 0.0 | 0.3159 |
| 0.6572 | 1.76 | 20000 | 0.6583 | 0.6318 | 0.0 | 0.3159 |
| 0.6578 | 2.64 | 30000 | 0.6771 | 0.6318 | 0.0 | 0.3159 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|