tmnam20 commited on
Commit
7869f91
1 Parent(s): e905d65

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ base_model: microsoft/mdeberta-v3-base
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ model-index:
14
+ - name: mdeberta-v3-base-qqp-100
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: tmnam20/VieGLUE/QQP
21
+ type: tmnam20/VieGLUE
22
+ config: qqp
23
+ split: validation
24
+ args: qqp
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8987880286915657
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8654655444502892
32
+ ---
33
+
34
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
35
+ should probably proofread and complete it, then remove this comment. -->
36
+
37
+ # mdeberta-v3-base-qqp-100
38
+
39
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QQP dataset.
40
+ It achieves the following results on the evaluation set:
41
+ - Loss: 0.2790
42
+ - Accuracy: 0.8988
43
+ - F1: 0.8655
44
+ - Combined Score: 0.8821
45
+
46
+ ## Model description
47
+
48
+ More information needed
49
+
50
+ ## Intended uses & limitations
51
+
52
+ More information needed
53
+
54
+ ## Training and evaluation data
55
+
56
+ More information needed
57
+
58
+ ## Training procedure
59
+
60
+ ### Training hyperparameters
61
+
62
+ The following hyperparameters were used during training:
63
+ - learning_rate: 2e-05
64
+ - train_batch_size: 32
65
+ - eval_batch_size: 16
66
+ - seed: 100
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: linear
69
+ - num_epochs: 3.0
70
+
71
+ ### Training results
72
+
73
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
74
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
75
+ | 0.3099 | 0.44 | 5000 | 0.2921 | 0.8751 | 0.8326 | 0.8539 |
76
+ | 0.269 | 0.88 | 10000 | 0.2732 | 0.8820 | 0.8378 | 0.8599 |
77
+ | 0.2421 | 1.32 | 15000 | 0.2795 | 0.8894 | 0.8520 | 0.8707 |
78
+ | 0.2198 | 1.76 | 20000 | 0.2674 | 0.8937 | 0.8566 | 0.8751 |
79
+ | 0.188 | 2.2 | 25000 | 0.2778 | 0.8964 | 0.8602 | 0.8783 |
80
+ | 0.1916 | 2.64 | 30000 | 0.2861 | 0.8977 | 0.8636 | 0.8807 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.36.0
86
+ - Pytorch 2.1.0+cu121
87
+ - Datasets 2.15.0
88
+ - Tokenizers 0.15.0