tmnam20 commited on
Commit
739097e
1 Parent(s): 2fbd146

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ base_model: bert-base-multilingual-cased
6
+ tags:
7
+ - generated_from_trainer
8
+ datasets:
9
+ - tmnam20/VieGLUE
10
+ metrics:
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-multilingual-cased-qnli-100
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tmnam20/VieGLUE/QNLI
20
+ type: tmnam20/VieGLUE
21
+ config: qnli
22
+ split: validation
23
+ args: qnli
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8885227896760022
28
+ ---
29
+
30
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
+ should probably proofread and complete it, then remove this comment. -->
32
+
33
+ # bert-base-multilingual-cased-qnli-100
34
+
35
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset.
36
+ It achieves the following results on the evaluation set:
37
+ - Loss: 0.3284
38
+ - Accuracy: 0.8885
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 2e-05
58
+ - train_batch_size: 32
59
+ - eval_batch_size: 16
60
+ - seed: 100
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 3.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.4041 | 0.15 | 500 | 0.3611 | 0.8488 |
70
+ | 0.3784 | 0.31 | 1000 | 0.3232 | 0.8603 |
71
+ | 0.364 | 0.46 | 1500 | 0.3128 | 0.8642 |
72
+ | 0.364 | 0.61 | 2000 | 0.3020 | 0.8702 |
73
+ | 0.3236 | 0.76 | 2500 | 0.2960 | 0.8768 |
74
+ | 0.3475 | 0.92 | 3000 | 0.2895 | 0.8816 |
75
+ | 0.252 | 1.07 | 3500 | 0.3019 | 0.8812 |
76
+ | 0.261 | 1.22 | 4000 | 0.2783 | 0.8893 |
77
+ | 0.2718 | 1.37 | 4500 | 0.2880 | 0.8832 |
78
+ | 0.2407 | 1.53 | 5000 | 0.3017 | 0.8812 |
79
+ | 0.254 | 1.68 | 5500 | 0.2775 | 0.8827 |
80
+ | 0.2611 | 1.83 | 6000 | 0.2837 | 0.8812 |
81
+ | 0.257 | 1.99 | 6500 | 0.2816 | 0.8852 |
82
+ | 0.1645 | 2.14 | 7000 | 0.3323 | 0.8845 |
83
+ | 0.1679 | 2.29 | 7500 | 0.3568 | 0.8825 |
84
+ | 0.1643 | 2.44 | 8000 | 0.3203 | 0.8889 |
85
+ | 0.1662 | 2.6 | 8500 | 0.3240 | 0.8878 |
86
+ | 0.1558 | 2.75 | 9000 | 0.3302 | 0.8856 |
87
+ | 0.1614 | 2.9 | 9500 | 0.3299 | 0.8872 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.35.2
93
+ - Pytorch 2.2.0.dev20231203+cu121
94
+ - Datasets 2.15.0
95
+ - Tokenizers 0.15.0