File size: 1,976 Bytes
6fc65c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: xlm-roberta-base
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_boolq_XLMroberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# loha_fine_tuned_boolq_XLMroberta

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5831
- Accuracy: 0.7778
- F1: 0.6806

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.6993        | 4.1667  | 50   | 0.6280          | 0.7778   | 0.6806 |
| 0.6581        | 8.3333  | 100  | 0.5915          | 0.7778   | 0.6806 |
| 0.6619        | 12.5    | 150  | 0.5941          | 0.7778   | 0.6806 |
| 0.6547        | 16.6667 | 200  | 0.5880          | 0.7778   | 0.6806 |
| 0.6558        | 20.8333 | 250  | 0.5883          | 0.7778   | 0.6806 |
| 0.6554        | 25.0    | 300  | 0.5868          | 0.7778   | 0.6806 |
| 0.6598        | 29.1667 | 350  | 0.5841          | 0.7778   | 0.6806 |
| 0.6581        | 33.3333 | 400  | 0.5831          | 0.7778   | 0.6806 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1